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Abstract: Computational methods are well-established tools in the drug discovery process and
can be employed for a variety of tasks. Common applications include lead identification and
scaffold hopping, as well as lead optimization by structure-activity relationship analysis and
selectivity profiling. In addition, compound-target interactions associated with potentially harmful
effects can be identified and investigated. This review focuses on pharmacophore-based virtual
screening campaigns specifically addressing the target class of hydroxysteroid dehydrogenases.
Many members of this enzyme family are associated with specific pathological conditions, and
pharmacological modulation of their activity may represent promising therapeutic strategies.
On the other hand, unintended interference with their biological functions, e.g., upon inhibition by
xenobiotics, can disrupt steroid hormone-mediated effects, thereby contributing to the development
and progression of major diseases. Besides a general introduction to pharmacophore modeling
and pharmacophore-based virtual screening, exemplary case studies from the field of short-chain
dehydrogenase/reductase (SDR) research are presented. These success stories highlight the suitability
of pharmacophore modeling for the various application fields and suggest its application also in
futures studies.

Keywords: pharmacophore; virtual screening; ligand protein interactions; hydroxysteroid
dehydrogenase; oxidoreductase

1. Introduction

Pharmacophore Modeling

The concept of “pharmacophores” dates back to the late 19th century, when Paul Ehrlich
suggested that specific groups within a molecule are responsible for its biological activity [1,2].
The pharmacophore definition, as currently used, was developed over time, with many researchers
actively participating in the process (for a detailed history of pharmacophores, please refer to
Giiner and Bowen [2]). However, Schueler provided the basis for our modern understanding of
a pharmacophore [2,3], which is defined by the International Union of Pure and Applied Chemistry
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(IUPAC) as “the ensemble of steric and electronic features that is necessary to ensure the optimal
supra-molecular interactions with a specific biological target structure and to trigger (or to block) its
biological response” [4]. According to this definition, the interaction patterns of bioactive molecules
with their targets are represented via a three-dimensional (3D) arrangement of abstract features that
define interaction types rather than specific functional groups. These interaction types can, for example,
include the formation of hydrogen bonds, charged interactions, metal interactions, or hydrophobic
(H) and aromatic (AR) contacts (Figure 1). Besides that, many pharmacophore modeling programs
allow for the addition of steric constraints. These so-called exclusion volumes (XVols) mimic the
geometry of the binding pocket and prevent the mapping of compounds that would be inactive in the
experimental assessment due to clashes with the protein surface. In its entirety, a pharmacophore model
represents one binding mode of ligands with a specific target, as exemplified on 173-hydroxysteroid
dehydrogenase (HSD) type 1 (Figure 1).
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Figure 1. Pharmacophore models based on the estrogen equilin co-crystallized with 173-hydroxysteroid
dehydrogenase type 1 (PDB entry 1EQU [5]) and generated with LigandScout [6] (*), Discovery
Studio [7] (#), and Molecular Operating Environment (MOE) [8] (§). H, hydrophobic feature; HBD,
hydrogen bond donor; HBA, hydrogen bond acceptor; XVols, exclusion volume.

Pharmacophore models can be generated using two different approaches (Figure 2) depending
on the input data employed for model construction. In the structure-based approach, the interaction
pattern of a molecule and its targets are directly extracted from experimentally determined
ligand-target complexes (Figure 2A). An important source for these complexes, e.g., derived from
NMR-spectroscopy or X-ray crystallography, represents the Protein Data Bank (PDB, www.pdb.org) [9].
To date (access date 2 November 2015), more than 113,000 macromolecular structures are stored in
this online repository. However, not all of these structures were solved in a complex with a bound
ligand, and in the case of induced fit, the binding of different ligands to an enzyme or receptor can
lead to different interactions that are not covered by a single structure. To address this limitation, some
pharmacophore modeling programs, e.g., Discovery Studio [7] and LigandScout [6], also provide tools
to create pharmacophore models based exclusively on the topology of the binding site and in the
absence of a ligand [10]. In Discovery Studio, for example, the binding site can be defined manually by
selecting residues within the desired cavity or by applying implemented binding site identification
tools. Once the binding site is defined, the program automatically calculates pharmacophore features
based on the residues lining the active site. This initial ensemble of pharmacophore features can then be
adapted to construct the final hypothesis [10]. In addition, structure-based pharmacophore models can
also be generated with computationally derived ligand-target complexes. In the course of a docking
run, known active compounds are fitted into the empty binding pocket of the target [11]. These docked
binding poses can then directly be employed to extract the interaction patterns. For further refinement
of the initial docking poses, molecular dynamics (MD) simulations can be conducted [12] prior to
model generation.

In the course of ligand-based modeling, three-dimensional (3D) structures of two or more known
active molecules are aligned and common pharmacophore features shared among these training set
molecules are identified (Figure 2B). In a ligand-based approach, all of the common chemical features from
the pharmacophore have to be presumed as essential, whereas in a structure-based approach, it can be
considered whether a chemical feature of a molecule is directly involved in the ligand binding or not.
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Figure 2. (A) Structure- and (B) ligand-based pharmacophore model generation with LigandScout.
(A) Based on the complex of equilin bound to 173-HSD1 (PDB entry 1EQU [5]), an initial
pharmacophore model is created automatically; (B) Conformational models of known 173-HSD1
ligands [13,14] are used to align the compounds and extract pharmacophore features they share.

Usually, datasets containing known active and inactive molecules are employed to assess the
quality of the developed models. These datasets need to be designed carefully, because they largely
influence the quality of the model and, accordingly, the success of the study. Only active molecules
should be included, for which the direct interaction has been experimentally proven [15,16], e.g., by
receptor binding or enzyme activity assays on isolated or recombinant proteins. Cell-based assays
should be avoided in this context, because many factors other than interaction with the target can
influence the results: Active compounds may potentially exert their effect via other mechanisms
than the intended one, whereas on the other hand, inactive compounds may actually interact
with the target, but due to poor pharmacokinetic properties, this cannot be detected. In addition,
appropriate activity cut-offs need to be defined to avoid the inclusion of compounds with a low binding
affinity and high ECs(/ICsg values (which may even be classified as “inactive”). Finally, the dataset
should contain structurally diverse molecules [17] whenever possible. Preferably, experimentally
confirmed inactive compounds should be included in the “inactives” dataset used for the theoretical
validation [17,18]. Besides the original literature, several public compound repositories such as
ChEMBL [19], Drugbank [20], or OpenPHACTS [21] can be explored for target-based activity data of
compounds. In addition, several high-throughput screening (HTS) initiatives such as ToxCast [22],
Tox21 [23], and PubChem Bioassay [24] provide a valuable resource for both active and inactive
molecules. Whenever no or only a limited number of known inactive molecules are available, so-called
decoys (compounds with unknown biological activity but assumed to be inactive) might be employed.
These decoy-datasets need to be adapted for every target and should contain compounds with similar
one-dimensional (1D) properties [25-27] but different topologies compared to the known active
molecules. These properties can include the number of hydrogen bond donors (HBDs), the number
of hydrogen bond acceptors (HBAs), the number of non-polar atoms [25], molecular weight, logP,
and the number of rotatable bonds [27]. The Directory of Useful Decoys, Enhanced (DUD-E) [28]
provides a free service (http:/ /dude.docking.org), where optimized decoys are generated based on
the smiles codes of the uploaded active molecules. In general, a ratio of about 1:50 for the number
of active molecules and decoys is recommended [28]. This should reflect the prospective screening

22801



Molecules 2015, 20, 2279922832

database, where usually only a few active molecules are also distributed among a vast amount of
inactive molecules (Figure 3).
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Figure 3. Enrichment of active molecules in the virtual hit list. Usually, the majority of compounds in
a screening database are inactive molecules, while a small pool of bioactive molecules is contained.
Pharmacophore-based virtual screening can help to enrich active molecules in the hit list compared to
a random selection of test compounds.

The preliminary models generated with both approaches need further improvement in the
majority of cases [16,29] to facilitate the recovery of the active molecules and concomitantly exclude
the inactive compounds in the dataset from the hit list. Basic model refinement steps include the
deletion or addition of pharmacophore features and adaptations concerning the feature weight and
size. Selected features can also be defined as optional and, therefore, can but do not have to be mapped
by a molecule. In addition, a user-defined number of omitted features can be specified in many
pharmacophore modeling programs. More sophisticated modifications comprise the modification of
feature definitions, i.e., the functional groups covered by a pharmacophore feature.

The aim of pharmacophore-based virtual screening (VS) is to enrich active molecules in a screening
database in the virtual hit list (Figure 3). Multiple quality metrics are available that help to evaluate
the quality of the developed pharmacophore model, for example the enrichment factor [30] (the
enrichment of active molecules compared to random selection), yield of actives (the percentage of
active compounds in the virtual hit list), specificity (the ability to exclude inactive compounds) and
sensitivity (the ability to identify active molecules), and the area under the curve of the Receiver
Operating Characteristic plot (ROC-AUC) [31]. For detailed descriptions of commonly applied quality
parameters we refer to earlier work [15,16,26,32]. The ultimate proof of a model’s quality and value, i.e.,
whether it is indeed capable of proposing novel active molecules, can, however, only be determined in
a prospective experiment, as will be explained in more detail below. A workflow summarizing the
individual steps of pharmacophore model generation and application is depicted in Figure 4.

As outlined below, refined, high quality pharmacophore models can then be employed for
multiple tasks.
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Figure 4. The different consecutive steps in pharmacophore model generation, refinement, and
prospective application.

2. Applications of Pharmacophore-Based VS

In the course of a VS run, a pharmacophore model is screened against large chemical libraries,
and molecules mapping the model are collected in a virtual hit list. These molecules fulfill the
requirements of the model and therefore have a high likelihood to be active in the experimental testing.
Accordingly, VS can be used to filter promising compounds out of large compound collections and
enrich active molecules in chemical databases selected for experimental investigations. VS is considered
a valuable support for classical HTS campaigns [33,34], because true positive hit rates are usually
much higher than in those “random” testing strategies [35-37]. Reported hit rates from prospective
pharmacophore-based virtual screening vary between individual studies, but are typically in the range
of 5% to 40% (an excellent collection of prospective studies has been presented earlier [16]). On the other
side, the hit rates of identifying active molecules upon random selection of test compounds are typically
below 1% and have been described, for example, as 0.55% for glycogen synthase kinase-3f3 [36],
0.075% for peroxisome proliferator-activated receptor (PPAR) vy [38], and 0.021% for protein tyrosine
phosphatase-1B [37].

2.1. Drug Discovery

Pharmacophore-based VS is widely applied in different steps of the drug discovery process and
facilitates the initial selection of compound classes as well as the optimization of compound properties
as outlined below.

2.1.1. Lead Identification

The most common application of pharmacophore-based virtual screening concerns lead
identification, the so-called cherry-picking approach. Virtual screening is often deployed in these
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projects to prioritize molecules for testing and minimizing the number of compounds to be investigated
in biological screens. The ultimate aim is the identification of novel lead compounds for a specific
disease-related target, which can be developed into drug candidates for the treatment of the intended
disease, with numerous studies during the last years describing such applications [39—44]. For example,
Ha et al. reported the discovery of novel ligands for the chemokine receptor CXCR2 by using a
ligand-based pharmacophore modeling approach [45]. In the course of a pharmacophore-based virtual
screening for novel histamine Hj receptor antagonists, Lepailleur ef al. identified novel compounds
additionally binding to the 5HT, receptor [46]. Both activities were considered beneficial for the
treatment of Alzheimer’s disease and the authors were the first to report compounds with this dual
mechanism of action [46].

2.1.2. Structure-Activity Relationships

As mentioned in the introduction, a pharmacophore model represents the putative binding mode
of active molecules to their target. It therefore describes the crucial functionalities required for a
compound’s activity. A pharmacophore model is trained to discriminate between active and inactive
molecules (in the best case even between members of the same chemical series), which makes it highly
valuable for establishing structure-activity relationships (SARs). Differences in the experimentally
observed biological activities of a set of compounds can be rationalized based on the presence/absence
of chemical groups, represented by pharmacophore features, in the respective molecules. SARs
can be established during model building, thereby elucidating the underlying mechanisms for the
(absent) biological activity. For example, Ferreira et al. employed pharmacophore models to elucidate
important features responsible for the interaction of compounds with the P-glycoprotein drug binding
site [47]. Previous studies suggested a crucial role for a nitrogen atom in the modulators; however,
active constituents from Euphorbia species isolated in-house did not contain such a moiety. The
authors generated multiple refined pharmacophore models and evaluated them against a dataset of
literature-derived modulators, the in-house collection, and inactive molecules. Their final model
highlighted the important role of hydrophobic contacts and the presence of a HBA feature for
P-glycoprotein modulators and showed that mapping of the most active compounds was also
preserved when a further HBA /HBD feature was added [47]. In addition, pharmacophore models can
be employed to reflect previously elucidated SARs for the identification of novel bioactive molecules. In
2002, Flohr et al. used the endogenous peptide urotensin II and synthetic analogues to experimentally
identify interactions that are crucial for binding to the urotensin II receptor [48]. Based on the
established SAR, pharmacophore models were built and employed to screen a chemical library
containing small drug-like compounds. Subsequent experimental testing of the virtual hits led to the
identification of six novel scaffold classes, which, importantly, contained non-peptic molecules [48].

2.1.3. Scaffold Hopping

A pharmacophore feature describes abstract chemical functionalities rather than specific functional
groups. Additionally, pharmacophore models only demand local functional similarity of active
compounds and virtual hits at 3D locations essential for biological activity. Therefore, there are
no specifications concerning the actual two-dimensional (2D) structures of mapping compounds.
Although the composition of a pharmacophore model is influenced by the 2D structure of the molecules
employed for model generation and refinement, it still allows for mapping of structurally distinct
hits. This makes pharmacophore modeling broadly applicable for the investigation of molecules
originating from a diverse chemical space such as natural products and synthetic compounds.
Importantly, it also allows for the identification of novel scaffolds that have not been associated with
the target of interest before, a strategy that is called scaffold hopping. An earlier review extensively
discussed pharmacophore modeling in the context of scaffold hopping [49]. A recent study employed
pharmacophore modeling for the discovery of novel transient receptor potential vanilloid type 1
channel ligands [50]. Although the initial hits only weakly interacted with the target, they represent an
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interesting starting point for further chemical optimization. Such studies mostly emphasized novel
chemical scaffolds and retrieved low similarity scores compared to the highly active compounds in the
theoretical validation dataset [50].

Scaffold hopping is certainly relevant for the pharmaceutical industry that needs to explore
compounds which are not yet covered by intellectual property issues. Of relevance for the general
public, scaffold hopping facilitates the identification of chemicals with only limited available data.
This is often the case for environmental pollutants and chemicals from consumer products that are
often not drug-like by their nature.

2.1.4. Selectivity Profiling

For some projects, it may be of the utmost importance to identify compounds that selectively
modulate the activity of one or more isoforms of an enzyme (family) to trigger the desired biological
effect. For example, steroidal core structures are frequently found in endogenous and exogenous
bioactive compounds; however, these compounds often lack selectivity. To identify selective
compounds, specific chemical substitutions leading to additional hydrophobic or ionic interactions
and hydrogen bonds have to be implemented. It has to be emphasized that these specific chemical
modifications allow for distinguishing between the enzyme of interest and its related enzymes.

For example, 173-HSD1 inhibitors are promising drug candidates for the treatment of
hormone-sensitive breast cancer as well as endometriosis because they block the activation of estrone
to the highly potent endogenous estrogen receptor (ER) agonist estradiol [51-53]. On the other side,
the converse reaction, (i.e., inactivation of estradiol) mediated via 173-HSD2, should not be blocked
by these molecules. Ideally, bioassays of all relevant members within a given protein family would
be employed to assess a compound’s selectivity. Additionally, proteins sharing structural similarity
in the domain that contains the ligand binding pocket rather than sequence similarity should be
considered in the selectivity assessment of compounds [54,55]. Thus, a huge number of proteins
need to be covered in this resource- and time-consuming approach. In a first step, parallel screening
using a large collection of pharmacophores, covering the most relevant proteins, allows for an initial
characterization of a compound'’s activity profile and facilitates the prioritization of the bioassays to be
chosen for further biological analyses.

However, selectivity may not be limited to different isoforms. As exemplified by a study from
Guasch et al., it can even address the biological effect exerted via the same target [56]. The authors
focused on the exclusive discovery of novel PPARYy partial agonists. The retrieval of full agonists
was avoided to prevent the side effects accompanying full receptor activation. For this purpose, a
pharmacophore model for full agonists (called the anti-pharmacophore) was generated and used to
remove all potential full agonists from the screening database. In the second step, a partial agonist
pharmacophore model was applied to identify potential partial agonists in the compound library.
After several additional filtering steps, eight compounds were finally subjected to biological testing
and five of them could be confirmed as novel PPARy ligands displaying partial agonistic effects [56].

2.1.5. Combination with Other Techniques

Pharmacophore models are also often used together with other methods to further increase
the number of active molecules in the hit list via the application of a consensus approach.
Commonly employed combinations comprise docking, shape-based modeling, and MD simulation.

In addition, a number of filters are available that help to limit the virtual hits to those with the
desired properties and eliminate unwanted actions or molecules. Probably the most prominent filter
represents the Lipinski’s, describing properties that are shared by approved and orally administered
drugs [57]. In particular, these comprise a number of <5 HBDs, <10 HBAs, a molecular weight of <500,
and a cLogP <5. Since all descriptors are either five or a multiple of five, Lipinski ef al. referred to it as
the “rule of five”. Although the rule of five was initially developed to predict the oral bioavailability
of molecules, it is also widely applied as a general drug-like filter. Veber et al. suggested two other
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criteria for the oral bioavailability of compounds: First, compounds should have a number of <10
rotatable bonds and, second, either a polar surface area of <140 A2 or <12 HBAs and HBDs [58].

In analogy to Lipinski’s rule of five, Congreve et al. introduced the “rule of three” for the
identification of promising hit compounds in fragment-based drug discovery [59]. Their analysis
revealed that most of the small compounds that were successfully optimized to potent lead-like
candidates had a molecular weight of <300, a number of HBDs <3, a number of HBAs <3, and a
cLogP <3 [59].

More recently, a substructure filter was developed to identify highly problematic compounds that
notoriously produce false positive assay read-outs [60]. Baell and Holloway analyzed high-throughput
testing results and observed that a group of molecules were prone to unspecifically interfere with some
experimental test systems. The subsequently developed substructure filter can help to detect these
pan-assay-interference compounds (PAINS) [60] prior to spending time and resources in investigating
and optimizing such molecules [61].

Multiple of these methods and filters can be included as well. As an example, Noha ef al. employed
a variety of computational techniques in a sequential manner to identify novel inhibitors of microsomal
prostaglandin E; synthase-1 [62]. The workflow included multiple prefilters, among them also the
Lipinski filter, a pharmacophore-based virtual screening procedure, and molecular docking. Out of the
17 molecules finally selected for testing, two showed good activity in the experimental assay, and two
further had moderate effects. Temml et al. used a combination of pharmacophore- and shape-based
virtual screening to identify novel liver X receptor agonists [44]. In their study mentioned above [56],
Guasch et al. not only applied pharmacophore models, but also a multistep protocol comprised of
electrostatic and shape similarity and molecular docking to identify novel PPARy partial agonists.

2.2. The Short-Chain Dehydrogenase/Reductase Superfamily

The short-chain dehydrogenase/reductase (SDR) enzyme family are nicotinamide adenine
dinucleotide NAD (phosphate (P))-dependent enzymes sharing a common core structure of up to seven
parallel stranded 3—sheets flanked by three to four a—helices on each side, the so-called Rossmann
fold, for NAD(P) binding and a catalytic center characterized by a Tyr-(Xaa)s-Lys motif. This motif is
often found in combination with a conserved serine residue that stabilizes the orientation of the bound
substrate (Figure 5) [63]. SDRs typically share a low sequence identity between 20%-30%, but with
considerable structural similarity in the core domain.

The SDR family contains HSDs that play key roles in adrenal and gonadal steroidogenesis as
well as in the metabolism of steroids in peripheral tissues [64]. Some of these HSDs are considered
as promising therapeutic targets for the treatment of estrogen- and androgen-dependent diseases
such as osteoporosis, endometriosis, and breast and prostate cancer, and other enzymes gained
interest regarding the treatment of corticosteroid-related diseases such as diabetes, visceral obesity and
dyslipidemia, atherosclerosis, wound healing, glaucoma, neurodegenerative disease, and cognitive
impairment [53,65-67].

The development of specific SDR inhibitors needs to take into account the structural similarity
of the various SDR enzymes in order to exclude the inhibition of members causing adverse effects,
so-called off-targets. Suitable enzyme activity assays are fundamental for selectivity testing of potential
inhibitors. Koch et al. proposed that structural similarity rather than primary sequence similarity
should be chosen as the criterion for whether a certain chemical affects the activity of a related
enzyme [54]. Therefore, the closest structurally related enzymes should be included for selectivity
testing—using pharmacophore models and cell-based assays. Another application of the modeling
approaches is the identification of toxic xenobiotics including industrial and environmentally relevant
chemicals [68-70]. The role of several SDRs in xenobiotics metabolism and in steroid synthesis and
metabolism makes them prone as targets for endocrine disruption [71-76].
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Figure 5. The general structure of SDR enzymes exemplified on 173-HSD1 (PDB entry 1EQU [5]).
(A) The Rossmann fold consists of parallel stranded 3-sheets (yellow), which are flanked by «-helices on

both sides (green). This structural domain forms the binding site of the co-factor NADP+. The residues
Tyr155 and Lys159 of the Tyr-(Xaa)3-Lys motif as well as the conserved Ser142 are highlighted in rose;
(B) 2D depiction of 173-HSD1 (PDB entry 1EQU). Yellow triangles display (3-sheets and barrel symbols
a-helices. Apart from the Rossmann fold, structurally conserved regions are highlighted in red. The
conserved glycine-rich motif GxxxGxG is important for cofactor binding and the + indicates a positive
charged residue crucial for cofactor (NADP+) stabilization.

3. Examples from the SDR Family

3.1. 11B-Hydroxysteroid Dehydrogenase Type 1

The two isoenzymes of 113-HSD catalyze the interconversion of the biologically inactive
cortisone and the active cortisol (Figure 6). The 113-HSD1 is ubiquitously expressed and mediates
the regeneration of active glucocorticoids [77,78], whereas 113-HSD2 catalyzes the inactivation of
glucocorticoids mainly in the kidney, colon and placenta. There is evidence for beneficial effects of
113-HSD1 inhibition in the metabolic syndrome [79-87], atherosclerosis [88-91], osteoporosis [66,92],
glaucoma [93-95], cognitive functions [96-100], skin aging [101], and wound healing [102,103]. Thus,
inhibition of 113-HSD1 has substantial therapeutic potential for glucocorticoid-related diseases.
Numerous 113-HSD1 inhibitors have already been identified and some have reached the clinical
phase, but to date still no 113-HSD1 inhibitor is on the market [104]. Although structural variety is
prevalent among the 113-HSD1 inhibitors, the crystal structures are rather similar [105]. Nevertheless,
the observed differences are useful in selecting a structure for further in silico evaluations. To date, 27
human, four mouse, and three guinea pig 113-HSD1 crystal structures are accessible through the PDB;
however, there is currently no 3D structure of human 113-HSD1 in -complex with a substrate available.
In addition, structural information about 113-HSD2 is entirely missing.

.|IOH 11B—HSD1

—_—
B ——

11B-HSD2

0]
cortisone cortisol

Figure 6. Interconversion of cortisone and cortisol catalyzed by the 113-HSD enzymes.
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Schuster and Maurer et al. [106] were the first to introduce pharmacophore models for the
identification of novel classes of 113-HSD1 inhibitors. As there was no X-ray crystal structure of
113-HSD1 available at the beginning of their study, they employed two ligand-based pharmacophore
models as VS tools. Depending on the 113-HSD activity of the training compounds used for the model
generation, a model for 113-HSD1-selective (Figure 7A) and one for nonselective 113-HSD inhibitors
(Figure 7B), preferably targeting 113-HSD2, were developed. These models identified compounds
resembling the structure of the known unselective 113-HSD inhibitor glycyrrhetinic acid (GA),
steroid-like compounds, and novel structural classes. A comparison of the training set compounds
used for the generation of the 113-HSD1-selective and the 113-HSD-nonselective pharmacophore
models with the compounds from the VS showed similar inhibition profiles towards 113-HSD1 and
113-HSD2.

A

Figure 7. The selective (A) and nonselective (B) 113-HSD1 pharmacophore models reported in the
study by Schuster and Maurer [106]. The training compounds CAS 376638-65-2 (A) and carbenoxolone
(B) are aligned to the models. The 113-HSD1-selective model consisted of four H features (blue), one
HBA (green) and one HBD (magenta) feature and a shape restriction. The nonselective 113-HSD model
contained five H, four HBA features and also a shape restriction.

Testing the inhibitory potential of their VS hits, Schuster and Maurer ef al. determined biological
activities for human 113-HSD1, 113-HSD2, 173-HSD1 and 173-HSD2 [106]. Out of 30 tested
compounds, seven inhibited 113-HSD1 activity by more than 70% at 10 uM and only three showed
reasonable selectivity over the other tested enzymes.

The potential of the selective 113-HSD1 ligand-based pharmacophore model obtained by
Schuster and Maurer et al. [106] was further evaluated by Hofer et al. [107]. VS and subsequent
lead optimization by classical bioisosteric studies revealed a class of selective 113-HSD1 inhibitors
bearing an arylsulfonylpiperazine scaffold. Docking studies, performed to rationalize the biological
data, showed good alignment of all active compounds with the co-crystallized ligand, belonging
to the same chemical scaffold. This structure-based approach further validated the ligand-based
pharmacophore model.

Rollinger et al. used the same pharmacophore model as a query for the screening of a database
consisting of constituents from medicinal plants, in order to identify natural compounds selectively
inhibiting 113-HSD1 [108]. The chemical class of triterpenoids displayed one of the dominating
chemical scaffolds in the virtual hit list. Earlier investigations led to the assumption that extracts
from the anti-diabetic medical plant loquat (Eriobotrya japonica) dose-dependently and preferentially
inhibit 113-HSD1 over 113-HSD2 [109]. Therefore, the virtual screening hit corosolic acid, a known
constituent of E. japonica, was tested and identified as potent inhibitor of human 113-HSD1 with an
ICsp of 810 nM [108]. Subsequent bioassay-guided phytochemical analyses revealed further secondary
metabolites from the triterpenoid ursane type as 113-HSD1 inhibitors with ICs; in the micromolar
range. Importantly, a mixture of the constituents with moderate inhibitory activities displayed an
additive effect. This is a common observation in phytotherapy, where a mixture of constituents is
often responsible for the therapeutic effect. Docking studies for binding mode prediction suggested a
flipped binding mode, where these triterpenoids would not interact with the catalytic amino acids but
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with Thr124 and Tyr177 (Figure 8). Based on the most active compounds, a pharmacophore model
was generated that enriched active molecules on the top of the hit list and successfully reflected the
substructures important for binding. Additionally, this study demonstrates a further application in the
drug discovery process—finding inhibitors from natural origins.

Figure 8. The docking pose of the potent inhibitor corosolic acid in the binding pocket of 113-HSD1
(PDB entry 2BEL [110]) suggests interactions with Thr124 and Tyr177.

Considering the ongoing search for novel 11(3-HSD1 inhibitors, high predictivity and performance
of pharmacophores are essential. Thus, to maintain high quality standards, pharmacophore models
have to be continuously re-evaluated and improved. Vuorinen et al. [29] performed a refinement study
of the 113-HSD pharmacophore models previously described by Schuster and Maurer et al. [106] and
Kratschmar et al. [78]. In a first step, the selective 113-HSD1 model was refined by exchanging a
chemical feature and removing shape restriction using literature data. Whereas the unrefined model
was only able to recognize two out of 14 test compounds, the refined model found 13. Subsequent
prospective VS and biological testing revealed better performance of the refined model. However,
although the refinement improved the sensitivity of the model and more active compounds were
found, it decreased specificity and also more inactive compounds fitted into the model. Adding
a shape restriction, following newly identified selective 113-HSD1 inhibitors, increased specificity,
whereas the sensitivity remained the same. For additional testing of the model quality on a different
dataset, literature-based validation was performed with structurally diverse compounds, which had
not been used in the model development. Specificity was increased, whereas sensitivity decreased.
This illustrates that improvement of model quality is accompanied by balancing the specificity and
sensitivity of a model. Refinement of the 113-HSD2-selective model was equally conducted. Since there
is no 3D structure of 113-HSD2 available and only a few selective, mainly triterpenoid scaffold-based
113-HSD2 inhibitors are known, the 113-HSD2 model data are biased. They were, however, able to
improve 11p3-HSD2 model quality, and novel active scaffolds selectively inhibiting both 113-HSD1
(Figure 9A) and 113-HSD2 (Figure 9B) were discovered [29].

Using the refined 113-HSD1 model, Vuorinen et al. applied a VS to filter a database consisting of
constituents from medicinal plants to identify potential 113-HSD1 inhibitors focusing on triterpenoids
present in Pistacia lentiscus (P. lentiscus), so-called mastic gum that is used in traditional Greek medicine
for the treatment of diabetes [111]. The VS hit list contained eight hits of P. lentiscus constituents. The
two main constituents of mastic gum, masticadienonic acid and isomasticadienonic acid, were chosen
for further biological evaluation. Both compounds were shown to selectively inhibit 113-HSD1 over
113-HSD2 with ICs; values of 2.51 uM for masticadienonic acid and 1.94 uM for isomasticadienonic
acid, respectively. Examination of the whole resin’s activity revealed half the IC5 value of the single
molecules, suggesting an additive inhibitory effect. Thus, the hypothesis of 113-HSD1 involvement
in the antidiabetic activity of mastic gum was supported. Analyzing the binding orientation of the
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two substances by docking revealed interactions comparable to that of the co-crystallized ligand
carbenoxolone, suggesting a competitive binding mode. Thus, the refined pharmacophore model has
proven its ability to identify novel 113-HSD1 inhibitors from natural sources.
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Figure 9. Both the refined 113-HSD1 (A) and 113-HSD2 (B) model identified novel scaffolds [29].
The inhibitor fenofibrate maps the 113-HSD1 model (A) and ketoconazole matches the 113-HSD2
model (B). Both models were screened with one omitted feature. The 2D structures of the novel

inhibitors are depicted underneath the alignments.

Yang et al. performed a study using different 113-HSD1 crystal structures in order to identify
synthetic 113-HSD1 inhibitors [112]. They applied a combined approach of molecular docking
and ligand-based pharmacophore modeling. For virtual docking calculations the crystal structure
1XU9 [113] and the program DOCK4.0 [114] were used to screen a commercial compound database.
The 3000 compounds with the highest docking score were selected for a second docking run using
Glide [115]. Additionally, a ligand-based pharmacophore model for selective 113-HSD1 inhibitors
was constructed using Catalyst 4.10 [116], which was used for screening the 3000 compounds with
the Best Flexible Search mode. Compounds with high docking and good fit score were further
evaluated by filtering for drug likeness and finally selected for biological testing on human and
mouse 113-HSD1. Importantly, other studies showed significant species-specific variability in the
potency of various 113-HSD1 inhibitors, indicating significant differences in the 3D organization
of the hydrophobic substrate-binding pocket of human and mouse 113-HSD1 [117,118]. Due to
this issue, the tested compounds showed different inhibition profiles for the mouse and human
enzyme. Eleven out of 121 tested compounds inhibited the human 113-HSD1 with ICsg values of
0.26-14.6 uM, whereas six molecules inhibited the mouse 113-HSD1 with ICsg values of 0.48-12.49 uM.
Two substances displayed overlapping hits with ICsy for the human 113-HSD1 of 0.69 uM and
3.57 uM and for the mouse isoenzyme of 0.48 uM and 2.09 uM, respectively. In order to test the
selectivity over 113-HSD2 for subsequent animal studies, only compounds inhibiting mouse 113-HSD1
were tested for the inhibition of mouse 113-HSD2. All compounds selectively inhibited 113-HSD1.
Nevertheless, selectivity assessment needs to include human 113-HSD2 and, ideally, other SDRs.
Cross-species activity would be the optimal situation for preclinical evaluation in the development of
novel drug candidates.

A consecutive in silico study of Yang et al. includes virtual screening with 113-HSD1
structure-based pharmacophore models and subsequent docking for hit selection [119].
Compounds chosen in the docking process were able to form hydrogen bonds with the amino acids
Tyr183 and Ser170 from the catalytic triade. Nine out of 56 enzymatically tested compounds exhibited
dose-dependent and selective inhibition of human 113-HSD1 with ICs; values between 0.85-7.98 uM
and six substances inhibited the mouse 113-HSD1 with ICgy values between 0.44 uM and 8.48 uM.
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Four substances inhibited both isoenzymes with similar ICsy values. In contrast, during their first
113-HSD1 in silico study, Yang et al. identified 11 out of 121 tested compounds from the same database
as actives against 113-HSD1, with ICsy values between 0.26-14.6 uM [113]. Four of the identified
113-HSD1 inhibitors incorporate an arylsulfamido scaffold, an already reported scaffold to inhibit
113-HSD1 [118]. Besides, three new scaffolds were identified as displayed in Figure 10.

OH

o HO OH o)
OJN’NQ —
H (o O~

N\

ZT

H,N o Cl

Figure 10. The three new identified scaffolds by Yang et al. [119].

Table 1 summarizes the pharmacophore-based virtual screening studies and illustrates the
scaffold-hopping of the different 113-HSD1 inhibitors.

3.1.1. 17B-Hydroxysteroid Dehydrogenase Type 1

To date, 14 different human 17(-hydroxysteroid dehydrogenase (173-HSD) enzymes have been
reported, all of which except the aldo-keto reductase (AKR) member 173-HSD5 (AKR1C3) belong to

the SDR family [120]. The 173-HSDs essentially regulate the local metabolism and activity of estrogens
and androgens (Figure 11).

17p-HSDI1
R ——
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_—
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178-HSD3
17p-HSD5

—_—
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178-HSD2

—_—
-

17B-HSD2

So-androstanedione Sa-dihydrotestosterone

Figure 11. 173-HSDs involved in sex steroid metabolism.
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Table 1. 113-HSD1 pharmacophore-based virtual screening studies summarized.

Hits Biological Testing
: Pharmacophore Database Used .
Reference Study Aim . . Number of Tested in . .
Model for VS Most Active Hit Virtual Hits Vitro Actives Assay 1Cs5o Selectivity
Ligand—based Asinex Gold and S Against
using Catalyst Platinum, Bionet j@\/\ o o . 16/20304 15 2 Lysate 2.03 and 7.59 uM 11B-HSD2,
Sch d 11B3-HSD1 selective 2003, ChemBridge o ”kﬁ 17B-HSD1, and
1\2 uster ta“l 106 (4H,1HBA,1HBD, DBS, Clab and 17B-HSD2
7 Iau;IeSr 51[14 'h[‘b i ! and shape restriction) IDC, Enamine 03,
B- mibitors Interbioscreen 03
11B-HSD unselective  nat and syn, R » Most of them
(5H, 4 HBA and Maybridge 2003, 107/1776579 15 5 Lysate ﬂgggg; 8~(1)§‘_1329~§1uuMM against 17-HSD1
shape restriction) NCI, Specs 09 03 : : and 173-HSD2
113-HSD1 selective N o ;
Hofer et al. [107] ©: \>—N/_\N—§—< — Against
Lead optimization from Schuster and In-house database ¥ NIVt - - - Lysate 0.7 uM 11p-HSD2
Maurer et al. [106]
Rollinger ef al. [108] 11B3-HSD1 selective DIOS (Natural Acainst
Natural compounds from Schuster and products in-house 172 1 1 Lysate 0.81 uM 11g{3-HSD2
inhibiting 118-HSD1 Maurer et al. [106] database)
corosolic acid
Refined models from Considered as active
0 . .
Schuster and if remaining enzyme .
Maurer et al. [106] In-house ><(o activity <55% at test "il;lmci)bl:i::;flerentlally
Using Discovery database, DIOS ¢ T T 468 ? 3 substance concentration 5 ey one
Studio of 20 uM or <65% at test nselacti
substance concentration ~VaS Unselecuve
11p3-HSD1 selective fenofibrate of 10 uM 5%—40%
o]
Vuori tal. [29] ) r y One preferentially
uorinen et ar. In-house o L inhibited
. ysate o (19
Refinement study 11B-HSD2 selective  database, Specs, ~ © T © 444 25 2 1 t(” _i’l foEnzymerest 114 oD and
Maybridge N achvity one was
¥ unselective
ketoconazole
Two preferentially
inhibited
11B-HSD unselective EDC, In-house 38 4 36 ./o—'49 %o Enzyme rest 11{3—HSD? one
database activity preferentially
inhibited
113-HSD2
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Table 1. Cont.

Hits Biological Testing
: Pharmacophore Database Used .
Reference Study Aim . . Number of Tested in . .
Model for VS Most Active Hit Virtual Hits Vitro Actives Assay (@5 Selectivity
. Refined 11p3-HSD1 .
Vuorinen ef al. [112] model from DIOS 305/6702 2 2 Lysate 1.94 M and 2.15 uM Against
Mode of action study . 113-HSD2
Vuorinen et al. [29]
o
Acti inst h
ctive agamst uman 3000 S elected by 121 (39 out of Only tested
. 113-HSD1 docking (these . R Human 11p-HSD1 :
Ligand-based ) docking and Scintillation against mouse
Yang et al. [113] _ b 3000 were fitted e 0.26-14.6 uM
o Using Catalyst SPECS o N . 82 from 11 proximity . 113-HSD2 not
11B-HSD1 inhibitors L )<~ inthe Nine compounds Mouse
(4H, 1HBA, 1 AR) SN pharmacophore assay tested toward the
oH pharmacophore modeling) 113-HSD1 0.48-12.49 uM human 113-HSD2
model) &
Active against human
and mouse 113-HSD1
;rnvg(()ieslt; 1ilcsti;r(gre_based Ho OH Nine Scintillation Human 11B-HSD1
Yang et al. [119] : o L. ’”JQ/ 1000 Selected for - 0.85-7.98 uM Against
11p-HSDI inhibitors LigandScout (PDB  SPECS AR each model 56 humanand  proximity ;00115 HgD1 11B-HSD2
code 2IRW) six mouse assay 0.44-8.48 UM

(3 H, 1HBD, 1 HBA)
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The enzyme 173-HSD1 catalyzes the NADP (H)-dependent reduction of the weak estrogen
estrone to the potent estradiol and to a minor extent of dehydroepiandrosterone (DHEA) to
5-androstene-3$3,173-diol [121]. 17p3-HSD1 is predominantly expressed in the human placenta,
ovaries, and mammary gland, and is of major importance for the peripheral and gonadal estradiol
synthesis [122]. Several studies provide evidence for the association of 17(3-HSD1 with breast
cancer [123-125], endometriosis [52,126], endometrial cancer [127] and uterine leiomyoma [128].

Despite the recently increasing numbers of reported 17(3-HSD1 inhibitors, still no compound
reached clinical trials. To date, more than 20 crystal structures have been published. The binding
pocket of 173-HSD1 is an elongated hydrophobic tunnel, with key roles for Leu149, Val225, Phe226,
and Phe259, and polar areas at each end formed by His221 and Glu282 on one side and the catalytically
essential residues Ser142 and Tyr155 on the other side. The active site is limited by a flexible loop
(amino acids 188-201), which is not well resolved in the crystal structures (Figure 12) [13].
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Figure 12. Shape binding site of 173-HSD1 with equilin as co-crystallized ligand, key residues, a
flexible loop and the cofactor NADP* (PDB 1EQU).

In 2001, Hoffren et al. were the first to report structure-based pharmacophore models for the
discovery of 173-HSD1 inhibitors [129]. The pharmacophore models were validated to specifically
recognize compounds possessing the structural and chemical features of steroids and flavonoids.
Coumestrol displayed the most potent 173-HSD1 inhibiting activity among the test compounds
used for model validation. However, coumestrol also inhibited 173-HSD5 and is, therefore, not
selective [130]. Unfortunately, the virtual hits were not confirmed by biological validation [129].

To support the development of therapeutic inhibitors, database creation for pharmacophore model
validation should focus on selective inhibitors to increase model selectivity and sensitivity. Since
steroidal inhibitors and natural phytoestrogens, including flavonoids, often exhibit cross-reactivity
with other enzymes and hormone receptors involved in the steroidogenesis, non-steroidal scaffolds
are more favorable for virtual screening and drug development. However, although highly selective
inhibitors are needed for many therapeutic applications, polyvalent inhibitors acting on synergistic
pathways may be advantageous in some situations.

The 173-HSD1 can be inhibited by several modes: competing reversibly and irreversibly with the
natural substrate for its binding site, competing with NADP(H) for its binding site at the Rossmann
fold or occupying the ligand and the cofactor binding site by so-called hybrid compounds consisting of
a steroidal core and extended side-chains of NADP(H) moieties [131,132]. Since only crystal structures
containing steroidal inhibitors were available at that time, Schuster and Nashev et al. generated
structure-based pharmacophore models based on steroidal inhibitors [133]. They developed two
pharmacophore models, representing, on one hand, reversible competitive inhibitors based on the
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steroidal core equilin (Figure 13A) and, on the other hand, hybrid inhibitors (Figure 13B). Whereas
the first model was suggested to be suitable as a general screening tool, expecting many false positive
hits, the hybrid model was more restrictive due to the unique scaffold of the underlying hybrid
inhibitors. VS and subsequent in vitro validation of 14 selected compounds from the virtual hit list
revealed, amongst others, two nonsteroidal hits with ICsg of 5.7 uM and 19 uM, respectively. As
mentioned above, the SDR enzymes share substantial structural similarity. For selectivity assessment,
11B3-HSD1, 113-HSD2, 173-HSD2, 173-HSD3 and the AKR 173-HSD5 were tested. Two additional
inhibitors were selective. One was a steroidal compound with an ICs; of 3.8 pM for 113-HSD1 and
47 uM for 173-HSD1, and one a nonsteroidal 11(3-HSD1 inhibitor with ICsy of 6.2 uM and comparable
activity on 173-HSD3. These observations emphasize the importance of including structurally related
enzymes for selectivity assessment. In addition to the biological selectivity assessment, Schuster
and Nashev et al. applied pharmacophore models of structurally related enzymes as an alternative
strategy to identify unspecific inhibitors [133]. These pharmacophores should act as initial filters to
eliminate compounds with a low degree of selectivity that may exhibit off-target effects. Screening the
compounds identified as actives for 113-HSD1 with their previously established selective 113-HSD1
pharmacophore model resulted in retrieving one hit [106]. By deleting the shape restriction, the second
hit was found as well and, at the same time, showed higher best fit values than an inactive compound.
Thus, screening of pharmacophore models of related enzymes may facilitate the discrimination of
selective and nonselective inhibitors and the virtual hit selection for in vitro testing, similar to the study
by Guasch et al. described above [56].

Figure 13. (A) 173-HSD1 model based on the equilin crystal structure (PDB entry 1EQU [5]); (B) The
potent inhibitor STX 1040 maps the hybrid 173-HSD1 pharmacophore model [133].

For pharmacophore model generation, Sparado et al. [134] superimposed five 17(3-HSD1 crystal
structures, covering most of the chemical space occupied by the co-crystallized ligands. Performing
a VS of an in-house compound library led to the identification of one virtual hit with moderate
inhibitory activity against 173-HSD1. Application of the rigidification strategy, scaffold hopping
and further SAR analysis resulted in two far more potent benzothiazole-scaffold-bearing inhibitors
with ICs in cell lysates of 44 and 243 nM, respectively. Both hits were selective against 173-HSD2.
Furthermore, the less active compound still potently inhibited estrogen formation, with a comparable
ICs5¢ value to the lysates, in a human cell model endogenously expressing 17(3-HSD1. The more potent
compound showed pronounced affinity to bind to ERx and ER3. Depending on whether binding to
ERx and ERf results in agonistic or antagonistic effects, this could cause beneficial or adverse effects.
Interestingly, although the two hits differ only in a carbonyl and amide bridge, respectively, binding
mode investigations by docking showed a 180° flipped orientation of the two molecules (Figure 14). The
observation of a flipped binding mode was also discovered for corosolic acid and other triterpenoides
in the binding pocket of 113-HSD1 as described earlier [108]. A follow-up lead optimization study to
improve activity and selectivity of the two compounds for in vivo applications, without the help of
molecular modeling techniques, led to the discovery of two new lead compounds [135]. They showed
selectivity over 173-HSD2, no ER binding and promising activity in the intact cell model.
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Figure 14. 17p3-HSDI1 in complex with the two hits from Sparado et al. [134], (doi:10.1371/journal.
pone.0029252.g010, doi:10.1371/journal.pone.0029252.g011) showing a 180° flipped orientation. ICsg
values of 44 nM (A) and 243 nM (B).

Table 2 shows a summary of the prospective pharmacophore-based virtual screening studies and
illustrates the scaffold-hopping potential for 173-HSD1 inhibitors.

Structure-based and ligand-based pharmacophore modeling was performed by Karkola et al. [136].
They generated four pharmacophore models with different methods based on a crystal structure, a
relaxed crystal structure, alignment of thienopyrimidinone inhibitors, and a docked complex of
173-HSD1 with a potent inhibitor. By VS, they found several compounds fitting into the active site of
173-HSD1 without determining the activity of the hits. However, to validate these hits as 173-HSD1
inhibitors, biological testing is needed. In addition, they could apply their differently generated
pharmacophore models to calculate selectivity and sensitivity.

3.1.2. 173-Hydroxysteroid Dehydrogenase Type 2

The oxidative inactivation of estradiol to estrone is predominantly catalyzed by 17p3-HSD2.
Additionally, 17(3-HSD2 is capable of converting testosterone into 4-androstene-3,17-dione
(androstenedione), 5x-dihydrotestosterone (DHT) into 5x-androstanedione, 5-androstene-3(3,173-diol
to DHEA, and 20a-dihydroprogesterone into progesterone using the cofactor NAD+ [137,138].
The 173-HSD?2 is expressed in various tissues such as bone, placenta, endometrium, breast, uterus,
prostate, stomach, small intestine, and colon epithelium [139,140]. The current treatment options for
osteoporosis bear several limitations. Since 173-HSD2 is expressed in osteoblasts, its inhibition may
provide a new approach to treat osteoporosis by increasing the local availability of estradiol.

Since 173-HSD2 contains an N-terminal transmembrane anchor, the experimental 3D structure
determination remains a challenge and, to date, still no crystal structure is available. Due to this
lack, Vuorinen et al. constructed three ligand-based pharmacophore models as virtual screening
filters [141]. Virtual hit-testing in a cell-free assay revealed seven out of 29 compounds with ICsj values
against 173-HSD2 ranging between 0.24 uM and 33 uM. Most of the active compounds represented
phenylbenzene-sulfonamides and -sulfonates. With the new structural classes of 17(3-HSD2 inhibitors,
they performed a SAR study using two different approaches: first, by a 2D similarity search without
fitting the compounds into the pharmacophore models, and second, using a pharmacophore model
for VS. From the 2D search, one out of 16 compounds inhibited 173-HSD2 with an ICsj of 3.3 uM,
whereas the VS showed five out of 14 compounds with ICs5y between 1-15 uM. Selectivity of all
active compounds was tested against inhibition of 173-HSD1, 173-HSD3, 113-HSD1, and 113-HSD2.
The activity data of the phenylbenzene-sulfonamide and -sulfonate inhibitors revealed a phenolic
hydroxyl group with hydrogen bond donor functionality, which was important for 173-HSD2
inhibition. This feature was confirmed by a ligand-based pharmacophore model that was developed
based on several of the newly identified active compounds (Figure 15). Furthermore, to improve
the initial pharmacophore model, a refinement database was created, including the original test set
compounds and the newly identified inhibitors as well as the inactive compounds. The specificity of
the model was increased by adding exclusion volumes. This approach is an important step to enhance
a model’s ability to enrich active compounds from a database.
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Figure 15. The selective 173-HSD2 model contains a HBD feature (green sphere), which is important
for 173-HSD2 inhibitors such as the newly identified phenylbenzene-sulfonamide derivative 13 [141].

3.1.3. 173-Hydroxysteroid Dehydrogenase Type 3

The 173-HSD3 is almost exclusively expressed in the testes and catalyzes the reduction of
androstenedione to testosterone in the presence of NADPH [142]. Although 173-HSD3 is mainly
found in the testes, there is evidence for 173-HSD3 mRNA up-regulation in prostate cancer [143].
Co-expression of 17(3-HSDS5, catalyzing the same reaction, might limit the therapeutic efficacy
of 173-HSD3 inhibitors and a combined treatment with inhibitors against both enzymes should
be envisaged.

The enzyme is anchored through an N-terminal transmembrane domain to the endoplasmic
reticulum, and, like 173-HSD?2, its catalytic domain faces the cytoplasmic compartment [144,145].
As for 173-HSD2, there is still no crystal structure available for the membrane protein 173-HSD3.

|

Figure 16. (A) The novel 173-HSD3 inhibitor 1-7 was identified with the steroid-based model consisting
of two HBAs (green) and four H features (blue); (B) The non-selective inhibitor 2-2 mapped the
nonsteroid-based 173-HSD3 model containing two HBAs, two AR (orange), one H and one H-AR
feature [146].
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Two ligand-based pharmacophore models, based on steroidal and nonsteroidal 17(3-HSD3
inhibitors, were developed by Schuster et al. [146] (Figure 16). These ligand-based models supported
the observations by Vicker et al. of a highly hydrophobic active site of 173-HSD3 [147]. The models
were then used to screen eight commercial databases and the hit list was further filtered prior to the
selection of hits. Enzymatic tests showed that, from the steroid-based model, two out of 15 tested
substances inhibited 173-HSD3, with one also inhibiting 173-HSD1 [146]. At the same time, three
other compounds inhibiting the AKR 173-HSD5 were identified. The 173-HSD5 is a multifunctional
enzyme and, like 173-HSD3, catalyzes the conversion of androstenedione into testosterone. The most
potent compound was not selective and also inhibited 113-HSD1 and 113-HSD2. Similar results were
obtained with the nonsteroidal model. The nonsteroidal model and its training compounds displayed
several overlapping features with the lead compound identified earlier by Vicker et al. [147]; thus,
the examination of their compounds for 173-HSD5 inhibitory activity would be interesting. These
observations again emphasize the importance of including structurally related enzymes, independently
of their enzymatic classes, for selectivity profiling. A summary of the 173-HSD3 pharmacophore-based
virtual screening study presented by Schuster ef al. is provided in Table 3.
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Table 2. 173-HSD1 pharmacophore-based virtual screening studies summarized.

Reference Datab d Hits Biological Testing
. Pharmacophore Model atabase Use
Study Aim for Vs Most Active Hit Number of = Tested Actives Assa IC Selectivit
Virtual Hits  in Vitro Y %0 Y
Selective over 173-HSD2, 173-HSD3,
Structure-based Using 173-HSD5 and .ll B-HSD1, excepf one
Schuster and LigandScout and \ Oy, NH; compound, which was not selective
Nashev et al. [133] Catalyst 1I5R model (4 H, NCI, SPECS ° Sy 1559/340042 14 4,1C50 <50 uM  Lysates  5.7-47 uM towards 173-HSD5 and 115-HSD1
17B-HSD1 2HBA, 2 HBD) Based on HN However, one compound inhibited
inhibitors b inbiaten oY 178-HSD3 and 11@-HSD1 but not
Y 17p3-HSD1 and another compound
inhibited 113-HSD1 only
Sparado et al. [134] ngan'd-base'd By o 34% Enzyme - o
17-HSD1 superimposing In-house s inhibition with Selectivity of optimized compounds
o co-crystallized ligands \W, OH -/37 - 1 Cell-free tested against 173-HSD2 and ERo
inhibitors and lead . database 10 uM test
L using MOE (5 H, 3 HBA, O and ERB
optimization 1HBD, 1 AR) compounds
Table 3. Summary of the 173-HSD3 pharmacophore-based virtual screening study.
Hit Biological Testi
Reference Pharmacophore Database Used s 1070gica’ “csting
Study Aim Model for VS . . Number of Hits Tested . Enzyme ..
Most Active Hit after Filtering in Vitro Actives  Assay Inhibition Selectivity
LiSa“d'basled o 0 Inhibition >40%  Selective over 173-HSD2, 173-HSD4,
Using Catalyst gf 392171712102 15 2 with 2 uM test 17B-HSD?7, 118-HSD1, and 118-HSD2,
Model 1: steroidal N compounds as acceptable selectivity over 173-HSD1 and
training compounds  Asinex Gold and Qﬁ threshold 41.3% 173-HSD5. However, several hits inhibited
(four H, two HBA)  Platinum, I and 50.8% 17p-HSD5 more potently than 173-HSD3
Schuster et al. [146] ChembBridge, Lysates :
17B-HSD3 inhibitors Enamine, IF-Labs, y Selective over 173-HSD2, 173-HSD4,
Model 2: Maybridge, Specs, @[F 17p3-HSD7, and 113-HSD2, acceptable
non-steroidal Vitas-M o selectivity over 173-HSD1
training compounds N o 8190/1712102 16 2 55.6% and 57.5% One hit was not selective over 173-HSD5
(one H, two HBA, /_/N{ )_(/1 and the other not over 113-HSD1. However,
two AR, one H-AR) 7 s S several hits inhibited 173-HSD5 more

potently than 173-HSD3
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