Abstract Mathematics Lecture 12

Oktay Ölmez

3 N 3

We will discuss how to show that

- 1 an object is an element of a set,
- 2 how to prove one set is a subset of another and
- 3 how to prove two sets are equal.

Remember that;

$$\begin{array}{rcl} A \times B &=& \big\{(x,y) \, : \, x \in A, \, y \in B\big\}, \\ A \cup B &=& \big\{x \, : \, (x \in A) \lor (x \in B)\big\}, \\ A \cap B &=& \big\{x \, : \, (x \in A) \land (x \in B)\big\}, \\ A - B &=& \big\{x \, : \, (x \in A) \land (x \notin B)\big\}, \\ \overline{A} &=& U - A, \end{array}$$

æ

() 《 문) 《 문)

- (日)

How to Prove $a \in A$

To show that $a \in \{x : P(x)\}$ we just need to show that P(a) is true.

Likewise, to show $a \in \{x \in S : P(x)\}$, we need to confirm that $a \in S$ and that P(a) is true.

Example

Lets investigate elements of $A = \{x : x \in \mathbb{N} \text{ ve } 7 | x\}$. This set has form $A = \{x : P(x)\}$ where P(x) is the open sentence $(x \in \mathbb{N}) \land (7|x)$.

Thus $21 \in A$ because P(21) is true. Similarly, 7, 14, 28, 35, etc., are all elements of A.

But $8 \notin A$ because P(8) is false.

Example

Consider the set $A = \{X \in \mathcal{P}(\mathbb{N}) : |X| = 3\}$. We know that $\{4, 13, 45\} \in A$ because $\{4, 13, 45\} \in \mathcal{P}(\mathbb{N})$ and $|\{4, 13, 45\}| = 3$. But $\{1, 2, 3, 4\} \notin A$ since $|\{1, 2, 3, 4\}| \neq 3$.

How to Prove $A \subseteq B$

To prove that $A \subseteq B$, we just need to prove that the conditional statement If $a \in A$, then $a \in B$ is true.

This can be proved directly, by assuming $a \in A$ and deducing $a \in B$.

The contrapositive approach is another option: Assume $a \notin B$ and deduce $a \notin A$.

Proofs Involving Sets

Example

Prove that
$$\{x \in \mathbb{Z} : 18|x\} \subseteq \{x \in \mathbb{Z} : 6|x\}.$$

Proof.

Suppose $a \in \{x \in \mathbb{Z} : 18 | x\}$. This means that $a \in \mathbb{Z}$ and 18 | a.

By definition of divisibility, there is an integer c for which a = 18c.

Consequently a = 6(3c), and from this we deduce that 6|a. Therefore a is one of the integers that 6 divides, so $a \in \{x \in \mathbb{Z} : 6|x\}$.

Weve shown $a \in \{x \in \mathbb{Z} : 18|x\}$ implies $a \in \{x \in \mathbb{Z} : 6|x\}$, so it follows that $\{x \in \mathbb{Z} : 18|x\} \subseteq \{x \in \mathbb{Z} : 6|x\}$.

Example

Prove that if A and B are sets, then $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

Suppose $X \in \mathcal{P}(A) \cup \mathcal{P}(B)$. By definition of union, this means $X \in \mathcal{P}(A)$ or $X \in \mathcal{P}(B)$. Therefore $X \subseteq A$ or $X \subseteq B$ (by definition of power sets). We consider cases. **C**ase 1. Suppose $X \subseteq A$. Then $X \subseteq A \cup B$, and this means $X \in \mathcal{P}(A \cup B)$. **C**ase 2. Suppose $X \subseteq B$. Then $X \subseteq A \cup B$, and this means $X \in \mathcal{P}(A \cup B)$.

The above cases show that $X \subseteq \mathcal{P}(A \cup B)$. Thus weve shown that $X \in \mathcal{P}(A) \cup \mathcal{P}(B)$ implies $X \in \mathcal{P}(A \cup B)$, and this completes the proof that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.