
BLM 267 1/64

BM267 - Introduction to Data

Structures

Ankara University

Computer Engineering Department
Bulent Tugrul

1. Introduction

BLM 267 2/64

Objectives

• Learn most important basic data structures used
in programming computers. Such as Arrays,
Linked List, Queues, Stacks, Trees…

• Learn most important basic algorithms used on

these data structures. Such as Sorting, Searching,

and Hashing algorithms …

• Learn basic tools to measure/compare the

efficiency of these algorithms

BLM 267 3/64

There will be programming assignments and

labs.

• Brush up your C skills, -- especially:

• Built-in data types

• Arrays

• Structures, structure operations

• Pointers, pointer operations

• Dynamic memory allocation

• void and void* data types

Programming Tools

BLM 267 4/64

Definitions

• An “Algorithm” is method for solving problems that are suited for
computer implementation.

• An “Algorithm” is a sequence of instructions for solving a problem for
obtaining a required output for any legitimate input in a finite amount of
time.

BLM 267 5/64

• A “data structure” is a way to store and

organize data in order to facilitate access

and modifications.

• Algorithm + Data Structures = Program

Definitions-2

BLM 267 6/64

Design process - overview

• Analyze the problem

• Determine I / O data

• Determine relevant data structures

• Determine the operations needed on data

structures.

• Estimate the approximate space/time

requirements

• Re-analyze the problem.

BLM 267 7/64

• Choose a programming Language

• Determine the data structure implementation
method (Consecutive storage locations? Arrays?

Dynamic memory?)

• Implement data structures

• Implement the algorithm

• Test and modify to improve the space/time
requirements

Implementation - overview

BLM 267 8/64

• Greatest common divisor(gcd(m,n)) is defined

as the largest integer that divides both m and n,

where m and n are both non-zero positive integers,

evenly i.e with a remainder of zero.

• 1st Algorithm:Calculating the common prime factors

Step 1 Find the prime factors of m.

Step 2 Find the prime factors of n.

Step 3 Identify all the common factors in the both sets.

Step 4 Compute the product of the all the common

factors and return it as the gcd of the numbers given.

Example-1: Greatest Common Divisor

BLM 267 9/64

For the numbers 60 and 24, we get

60 = 2*2*3*5

24 = 2*2*2*3

gcd(60, 24) = 2*2*3 = 12

Example-1: Greatest Common Divisor(2)

BLM 267 10/64

• 2nd Algorithm: Consecutive integer checking
algorithm.

Step 1 Assign the value of min{ m, n} to t

Step 2 Divide m by t. If the remainder of this division is
0, go to Step 3; otherwise go to Step 4.

Step 3 Divide n by t. If the remainder of this division is
0, return the value of t as the answer and stop;
otherwise proceed to Step 4.

Step 4 Decrease the value of t by 1. Go to step 2.

For the numbers 60 and 24:

Step 1 t= 24;

Step 2 Go to Step 4

Step 2 Now t=23;

Example-1: Greatest Common Divisor(3)

BLM 267 11/64

Finally t becomes 12;

Step 2 remainder of the division is zero

Step 3 also the remainder of the division is zero

and return the t value which is 12 and stop

execution.

Example-1: Greatest Common Divisor(4)

BLM 267 12/64

3rd Algorithm:Euclid’s algorithm.

 Step 1 if n=0, return the value of m as the answer and stop; otherwise
proceed to step 2.

 Step 2 Divide m by n and assign the value of the remainder to r

 Step 3 Assign the value of n to m and value of r to n. Go to Step1.

• Implementation of Euclid’s algorithm

int Euclid(int m, int n){

int r;

while (n != 0){

r = m mod n;

m=n;

n=r;

}

return m;}

Example-1: Greatest Common Divisor(5)

BLM 267 13/64

• Assume: a set of nodes (representing cities,

nets of networks, circuit board connections...)

• Given: pairs of nodes: p-q denotes a

connection between p and q

• The relation ‘–’ is symmetric:

If p-q is true, then q-p is true.

• The relation ‘–’ is transitive:

If p-q and q-r are true, then p-r is true.

Example-2: Connectivity

BLM 267 14/64

Example-2: Connectivity (2)

BLM 267 15/64

Example-2: Connectivity (3)

1-2

2-7

3-4

7-4

9-7

8-7

6-8

...

BLM 267 16/64

Example-2: Connectivity (4)

(Two disconnected sets of nodes)

BLM 267 17/64

Example-2: Connectivity (5)

Problem: Filter out redundant pairs – print out a

pair only if it provides new information.

Input

Output

3-4 4-6 6-0 3-6 4-0 4-1 1-3 1-5

3-4 4-6 6-0 4-1 1-5

3

4

6

1

5

0

BLM 267 18/64

Example: Connectivity (6) - Abstract operations

Each time we get a new pair:

• Determine whether it represents a new

connection (find operation)

• Add the information represented by the pair to

the ‘knowledge’ base (union operation)

BLM 267 19/64

Example: Connectivity (7) - Data Structure

We will:

• Assume an upper limit for the number of nodes, N.

• Use an array that has N elements (one int per node).

• Nodes are numbered (0..N-1), corresponding to array

indices.

0 1 2 3 N-2 N-1

BLM 267 20/64

• Initially, array elements must indicate that all nodes are

disconnected. (No two array elements will have the same value,

each will contain its own index)

• This algorithm assumes that p and q are connected if and only if

the pth(id[p]) and qth(id[q]) entries are equal.

• To implement the union for p and q, we go through the array,

changing all the entries with the same name as p to have the

same name as q.

Example: Connectivity (8) - Representing sets

0 1 2 3 N-2 N-1

0 1 2 3 N-2 N-1

BLM 267 21/64

Example: Quick-Find(1) - Initialization

N = 10000

ID[N] is an array of int

FOR (i = 0 TO N-1) ID[i] i

#define N 10000;

int i;

int ID[N];

for (i = 0; i < N; i++)

ID[i] = i ;

BLM 267 22/64

Example: Quick-Find(2) -Operations

WHILE (a new pair p, q exists)

{

IF ID[p] == ID[q]

{

Connection already noted, no output

}

ELSE

{

Connection not noted, add, output

}

}

 Find operation

Union operation

BLM 267 23/64

N = 10000

ID[N] is an array of int

FOR (i = 0 TO N-1) ID[i] = i

WHILE (a new pair p-q exists)

{

IF ID[p] == ID[q]

{ continue }

ELSE

{ FOR i=0 to N-1

IF ID[i] == ID[p]

THEN ID[i] = ID[q]

Output p-q

}

}

Example: Quick-Find(3) -Operations

 Find operation

Union operation

BLM 267 24/64

Example: Quick-Find(4)

0 1 2 3 4 5 6 7 8 9Initial

0 1 2 4 4 5 6 7 8 93 4

0 1 2 9 9 5 6 7 8 94 9

0 1 2 9 9 5 6 7 0 9

0 1 9 9 9 5 6 7 0 9

0 1 9 9 9 6 6 7 0 9

8 0

2 3

5 6

BLM 267 25/64

0 1 9 9 9 6 6 7 0 9

0 1 9 9 9 9 9 7 0 9

0 1 9 9 9 9 9 9 0 9

0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

Example: Quick-Find(5)

5 9

7 3

4 8

5 6

0 2

2 9

BLM 267 26/64

Example: Quick-Find(6)

1 1 1 1 1 1 1 1 1 16 1

BLM 267 27/64

Example: Quick-Find(7)

0 1 7632 54 8 9

3 4

The initial

state

0 1 76

3

2 54 8 9

4 9

0 1 76

3

2 5

4

89

BLM 267 28/64

0 1 76

3

2 5

48

9

Example: Quick-Find(8)

8 0

2 3

0 1 76

32

5

48

9

BLM 267 29/64

5 6

0 1 76

32 548

9

2 9 Do nothing

Example: Quick-Find(9)

5 9

0 1 7

632 548

9

BLM 267 30/64

7 3

0 1

7632 548

9

Example: Quick-Find(10)

4 8

0 1

7632 548 9

5 6 Do nothing

0 2 Do nothing

BLM 267 31/64

Example: Quick-Find(11)

6 1

9

1

7632 540 8

BLM 267 32/64

Example: Quick-Find(12) - Analyzing Quick-find

The running time of the algorithm depends on

actual data.

Find: one operation (that’s why it’s called quick-find)

Union: N operations (at least)

Assuming a total of M union operations are

required, the running time of the algorithm will be

at least MN.

BLM 267 33/64

FOR (i = 0 TO N-1) ID[i] = i

WHILE (a new pair p-q exists) (once for each pair)

{

IF ID[p] == ID[q] (once for each pair)

continue

Else (assume M unions)

{ FOR i=0 to N-1 (MN times)

IF ID[i] == ID[p] (MN times)

THEN ID[i] = ID[q] (depends on data)

Output p-q (depends on data)

}
}

Example: Quick-Find(13) - Analyzing Quick-find

BLM 267 34/64

Example: Connectivity - Another approach

Let’s try to find a better (more efficient) algorithm

that solves the same problem ...

... Without increasing space requirements.

BLM 267 35/64

• Same data structure as previous algorithm.

Example: Quick–union – Data Structures

• Connections are to be visualized as tree branches.

• Array elements indicate whether the nodes are in the

same set by pointing to the same root node.

• Initially, array elements must indicate that all nodes are

disconnected. (Each array element contains its own

index)

0 1 2 3 N-2 N-1

0 1 2 3 N-2 N-1

BLM 267 36/64

Example: Quick–union(3) -Operations

N = 10000

ID[N] is an array of int

FOR (i = 0 TO N-1) ID[i] = i

WHILE (a new pair p, q exists)

{

FOR (i=p; i != ID[i]; i = ID[i])

FOR (j=q; j != ID[j]; j = ID[j])

IF i != j

THEN { ID[i] = j, output p-q }

}
 Union operation

Find

BLM 267 37/64

Example: Quick–union(4)

0 1 2 3 4 5 6 7 8 9Initial

0 1 2 4 4 5 6 7 8 93 4

0 1 2 4 9 5 6 7 8 94 9

0 1 2 4 9 5 6 7 0 9

0 1 9 4 9 5 6 7 0 9

0 1 9 4 9 6 6 7 0 9

8 0

2 3

5 6

BLM 267 38/64

Example: Quick–union(5)

0 1 9 4 9 6 6 7 0 9

0 1 9 4 9 6 9 7 0 9

0 1 9 4 9 6 9 9 0 9

0 1 9 4 9 6 9 9 0 0

0 1 9 4 9 6 9 9 0 0

0 1 9 4 9 6 9 9 0 0

5 9

7 3

4 8

5 6

0 2

2 9

BLM 267 39/64

Example: Quick–union(6)

1 1 9 4 9 6 9 9 0 06 1

BLM 267 40/64

0 1 7632 54 8 9

3 4

The initial

state

Example: Quick–union(7)

0 1 8742 65 9

3

4 9

0 1 8792 65

4

3

BLM 267 41/64

8 0

8

1 072 65

Example: Quick–union(8)

2 3

8

1 07659

4

3

2

9

4

3

BLM 267 42/64

Example: Quick–union(9)

5 6

8

1 076

5

2 9 Do nothing

5 9

8

1 07

6

5

9

4

3

2

9

4

3

2

BLM 267 43/64

7 3

8

1 0

76

5

9

4

3

2

Example: Quick–union(10)

4 8

81

0

76

5

9

4

3

2

BLM 267 44/64

Example: Quick–union(11)

5 6 Do nothing

0 2 Do nothing

6 1

8

1

0

76

5

9

4

3

2

BLM 267 45/64

Example: Quick–union(12) - Analyzing Quick-union

The union operation does not have to go through

N nodes, therefore it is faster than Quick-find.

Find operation is slower.

We can say that the algorithm is more efficient

than the previous version in the average case

(only after some analysis using the tools of the

coming lectures).

BLM 267 46/64

Worst-case Behavior of Algorithms

Some input sequences will cause the algorithm

to operate slower.

Such situations are called the worst-case.

Worst-case analysis of algorithms specify the

worst-case behavior of algorithms.

Algorithms are usually compared using the

worst and the average case behavior.

BLM 267 47/64

Example: Quick–union(13) - Worst-case

Suppose input pairs arrive in the order:

0-1 , 1-2 , 2-3 , 3-4 , 4-5 ...

The find operation for object 0 has to follow N-1 pointers.

BLM 267 48/64

Example: Quick–union(14) - Worst-case

The average number of pointers followed for the first N

pairs:

(0 + 1 + 2 + (N-1)) / N = (N-1) / 2

If N is large, similar situations may occur for many

subsets of nodes.

BLM 267 49/64

Example: Quick–union(15) - Worst-case

Note that we (arbitrarily) connect the first node (p) to the

second (q). This may cause long chains of nodes.

If we chose to connect the second node (q) to the first (p)

the analysis result would not change (the sequence could

be 1-0 , 2-1 , 3-2 , 4-3 , 5-4 ...)

We need to flatten the trees so that the union operation

could always be completed by going through a smaller

number of pointers.

BLM 267 50/64

Example:Weighted quick union

Use a second array to keep track of the number of nodes

in each tree.

Size

Initial: 0 1 2 3 N-2 N-1

0 1 2 3 N-2 N-1

1 1 1 1 1 1

0 1 2 3 N-2 N-1

BLM 267 51/64

If pair p-q needs to be added:

• If size(p) < size(q) then make node p a subtree of q

• Otherwise make node q a subtree of p

(then update node counts accordingly)

Example: Weighted quick union(2)

0 1 0 0 2 3 N-2 N-1

2 1 1 1 1 1

BLM 267 52/64

Example: Weighted quick union(3)

N = 10000, ID[N] SZ[N] are arrays of int

FOR (i = 0 TO N-1) { ID[i] = i SZ[i] = 1 }

WHILE (a new pair p, q exists)

{

FOR (i=p; i != ID[i]; i = id[i])

FOR (j=q; j != ID[j]; j = id[j])

IF i == j THEN continue

IF SZ[i] < SZ[j]

THEN { ID[i] = j SZ[j] += SZ[i] }

ELSE { ID[j] = i SZ[i] += SZ[j] }

output p-q
}

BLM 267 53/64

Example: Weighted quick union(4)

0 1 2 3 4 5 6 7 8 9Initial

1 1 1 1 1 1 1 1 1 1Size

0 1 2 3 3 5 6 7 8 93 4

1 1 1 2 1 1 1 1 1 1

0 1 2 3 3 5 6 7 8 3

1 1 1 3 1 1 1 1 1 1

4 9

BLM 267 54/64

Example: Weighted quick union(5)

8 1 2 3 3 5 6 7 8 3

1 1 1 3 1 1 1 1 2 1

8 1 3 3 3 5 6 7 8 3

1 1 1 4 1 1 1 1 2 1

8 1 3 3 3 5 5 7 8 3

1 1 1 4 1 2 1 1 2 1

2 3

5 6

8 0

BLM 267 55/64

Example: Weighted quick union(6)

8 1 3 3 3 5 5 7 8 3

1 1 1 4 1 2 1 1 2 1

8 1 3 3 3 3 5 7 8 3

1 1 1 6 1 2 1 1 2 1

8 1 3 3 3 3 5 3 8 3

1 1 1 7 1 2 1 1 2 1

5 9

7 3

2 9

BLM 267 56/64

Example: Weighted quick union(7)

8 1 3 3 3 3 5 3 3 3

1 1 1 9 1 2 1 1 2 1

8 1 3 3 3 3 5 3 3 3

1 1 1 9 1 2 1 1 2 1

8 1 3 3 3 3 5 3 3 3

1 1 1 9 1 2 1 1 2 1

5 6

0 2

4 8

BLM 267 57/64

8 3 3 3 3 3 5 3 3 3

1 1 1 10 1 2 1 1 2 1

6 1

Example: Weighted quick union(8)

BLM 267 58/64

0 1 7632 54 8 9

3 4

The initial

state

0 1 8732 65 9

4

Example: Weighted quick union(9)

4 9

0 1 8732 65

94

BLM 267 59/64

8 0

0

1 8732 65

94

Example:Weighted quick union(10)

2 3

0

1 873

2

65

94

BLM 267 60/64

5 6

0

1 873

2

5

694

Example: Weighted quick union(11)

2 9 Do nothing

5 9

0

1 873

2 5

6

94

BLM 267 61/64

Example:Weighted quick union(12)

7 3

0

1 8

7

3

2 5

6

94

4 8

0

1

87

3

2 5

6

94

BLM 267 62/64

Example: Weighted quick union(13)

6 1

0

1 87

3

2 5

6

94

5 6 Do Nothing

0 2 Do Nothing

BLM 267 63/64

Example: Weighted quick union(14)

Maximum number of pointers that must be traversed

when the tree has 2n nodes is n.

When two trees of 2n nodes are merged, we get a tree

of 2n+1 nodes, max of number of pointers that must be

traversed become n+1.

The weighed quick-union algorithm follows at most

2log2N = 2 lg N pointers to determine whether two of

N objects are connected (much better than (N-1))

