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• There are two kinds of algorithm efficiency: “time 

effinciency” and “space effinciency”. Time 

efficiency indicates that how fast an algorithm 

runs; space efficiency deals with amount of space 

it needs.

• Nowadays the amount of extra space required by 

an algorithm is typically not of as much concern, 

due to the improvements in memory capacity. 

• We are going to concentrate on time efficiency but 

analytical framework is applicable to analyzing 

space efficiency as well.

Analysis Framework
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• It is logical to investigate an algorithm’s effinciency as a 

function of some parameter “n” indicating the algorithm’s 

input size.

• The input size will be the size of the lists or arrays for 

problems such as sorting, searching, or finding the smallest 

element.  

Measuring an Input’s size
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• First approach: We can use time measurement ( second, or
milllisecond) to measure an algorithm’s running time.

• There are drawbacks of this approach, such as speed of the
computer, quality of programmer, the compiler used in
generating the machine code.

• Second approach: We can count the number of times each
algorithm’s operations is executed. The thing to do is to
identify the most important operation of the algorithm,
called the basic operation, the operation contributing the
most of the total running time, and compute the number of
times the basic operaion is executed.

• As a rule, it is not difficult to identify the basic operation
of an algorithm: it is usually the most time-consuming
operation in the algorithm’s innermost loop.

Units for Measuring Running time
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• Ex: Sequential Search

int search( int a[0...n-1], int K)

{

int i; executes only once

for( i=0;  i < n; i++ ) executes n times

if( a[i] = = K ) executes at most n times

return i; at most once

return –1; at most once

}

Units for Measuring Running time(2)
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• Most sorting algorithms work by comparing elements of a 
list with each other; for such algorithms the basic operation 
is a key comparision. 

• As another example algorithms for matrix multiplication  
require two operations; multiplication and addition. 
multiplication takes much more longer time than addition 
so we can use the total number of multiplication as our unit 
for algorithm measure.

• MatrixMultiplication(A[0..n-1, 0..n-1], B[0..n-1, 0..n-1])

for( i=0; i < n; i++)

for( j=0; j < n; j++)

C[i,j]=0;

for( k=0; k < n; k++)

C[i,j] = C[i,j] + A[i,k]*B[k,j];

Units for Measuring Running time(3)
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• Efficiency T(n) is investigated as a function 

of some parameter n indicating problem’s 

size.

• T(n) is computed as the number of times the 

algorithm’s “basic  operation” is executed.

• For matrix multiplication T(n)=n3

Units for Measuring Running time(4)
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Values of several functions important for analysis of 

algorithms
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Worst, Best, and Average Case

•There are many algorithms for which running time depends 

not only on an input size but also on a particular input.

•The running time of search algorithm can be quite different 

for the same list size n. In the worst-case, when there are no 

matching elements or the first matching element happens to 

be the last one on the list, the algorithm makes the largest 

number of key comparisons among all possible inputs of size 

n: 

T(n)worst= n.

•The worst-case efficiency of an algorithm is its efficiency for 

the worst case input of size n, which is an input of size n for 

which the algorithm runs the longest among all possible 

inputs of that size.
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• In order to find the worst case efficiency of an algorithm, 
we analyze the algorithm to see what kind of inputs yield 
the largest value of the basic operation’s count among all 
possible inputs of size n.

• The worst case analysis provides very important 
information about an algorithm’s efficiency by bounding 
its running time from above. In other words, it guarantees 
that for any instance of size ‘n’ the running time will not 
exceed T(n)worst .

• The best-case efficiency of an algorithm is its efficiency 
for the best case input of size n, which is an input of size n 
for which the algorithm runs the fastest.

• The best case does not mean that the smallest input; it 
means the input of size n for which the algorithm runs the 
fastest.

Worst, Best, and Average Case(2)



• For example, for search best case inputs will be of size n
with their first elements equal to search key. T(n)best=1

• The best case efficiency is not as important as worst case
efficiency.

• Neither worst-case nor best-case efficiency yields the
necessary information about an algorithms behavior on a
random input. The average-case efficiency provide us this
kind of information.

• To analyze the algorithm’s average-case efficiency’ we
must make some assumptions about possible inputs of size
n.

• The assumptions are:

– The probability of a successful search is equal to p ( 0
p 1)

– The probability of the first match occurring in the i th
position of the list is the same for every i.

Worst, Best, and Average Case(3)
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• In the case of a successful search, the probability of the 
first match occurring in the i th position of the list is p/n for 
every i.

• The number of comparisons made by the algorithm is i.

• In the case of unsuccessful search, the number of 
comparisons is n with the probability of such a search 
being (1-p).

• Tavg(n)= [1*p/n + 2*p/n+…+n*p/n] + n*(1-p)

= p/n*[1 + 2+…+n] + n*(1-p)

= p*(n+1)/2 + n(1-p)

If p=1( successful search) Tavg(n)= (n+1)/2

If p=0( unsuccessful search) Tavg(n)= n

Worst, Best, and Average Case(4)
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• General Plan for Analyzing Efficiency on Nonrecursive 

Algorithms

– Decide on parameters indicating an input’s size

– Identify the algorithms basic operations( As a rule, it is

located in its inner loop)

– Check whether the number of times the basic operation

is executed. Investigate worst, best, and average case

efficiency.

– Set up a sum expressing the number of times the

algorithm's basic operation is executed.

– Using standard formulas and rules of sum

manipulation, find a closed form for the count

Mathematical Analysis of Nonrecursive Algorithms
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• Ex 1:

Algorithm MaxElement( A[0…n-1])

{ //Determines the largest element of the array

maxval=A[0];

for( i=1; i < n; i++)

if( A[i]>maxval)

maxval=A[i];

return maxval;

}

• The input size is the number of element in the array; n

• The operation that are going to be executed most often are in the 

algorithm’s for loop.

Mathematical Analysis of Nonrecursive Algorithms(2)
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• There are two operations in loop’s body;the comparisons 

A[i]>maxval and the assignment maxval=A[i]. We consider the 

comparison as the basic operation because it is executed in each 

repetition.

• The number of comparisons will be n-1.

• The worst, best and average case efficiency will be same.

• The algorithm makes one comparisons on each execution of the 

loop; therefore 

n-1

T(n) =  1 = n-1

i=1

Mathematical Analysis of Nonrecursive Algorithms(3)
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• Ex 1:

Algorithm UniqueElements( A[0…n-1] )

{ //checks whether all the elements in a given array are distinct

for( i=0; i  n-2; i++)

for( j=i+1; j  n-1; j++)

if( A[i] = = A[j])

return false;

return true;

}

• The input’s size is the number of elements in the array: n

• The basic operation is comparison: A[i] = = A[j]

Mathematical Analysis of Nonrecursive Algorithms(4)
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• Worst case occurs in two situations: arrays with no equal
elements and the last two elements are the only equal pairs.

• For such inputs, one comparison is made for each repetition of
innermost loop therefore:

n-2 n-1 n-2 n-2

Tworst(n) =   1=  [( n-1)-(i+1) +1] =  ( n-1+i)

i=0 j=i+1 i=0 i=0

=(n-1)*n / 2

In the worst case algorithm has to make (n-1)*n / 2 comparisons.

What is efficiency of matrix multiplication?

Mathematical Analysis of Nonrecursive Algorithms(5)

n-1  n-1 n-1

Solution: =    1  = n3

i=0 j=0 k=0
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• General Plan for Analyzing Efficiency on Recursive Algorithms

– Decide on parameters indicating an input’s size

– Identify the algorithms basic operations( As a rule, it is located in its inner 

loop)

– Check whether the number of times the basic operation is executed. 

Investigate worst, best, and average case efficiency.

– Set up a recurrence relation, with an initial condition, for the number of 

times the basic operation is executed.

• Ex 1: Computing the factorial function F(n) = n!

n! = n*(n-1)*(n-2)*…*3*2*1 = n*(n-1)!  for n  1 and 0!=1

we can compute F(n)= F(n-1)*n

Mathematical Analysis of Recursive Algorithms
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• Algorithm F(n)

{//Computes n! recursively

If ( n = = 0 )

return 1;

else 

return F(n-1)*n; }

• We consider “n” as the algorithm input size.

• The basic operation of the algorithm is again multiplication.

• We denote T(n) the number of multiplications needed to 
compute F(n).

T(n) = T ( n – 1 )  +   1

to compute    to multiply 

F(n-1)            F(n-1) by n

Mathematical Analysis of Recursive Algorithms(2)
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• How to solve a recurrence equation

We need a initial condition that tells us the value which 

the sequence starts. We can obtain this value by 

inspecting the condition that makes the algorithm stop its 

recursive calls.

if ( n = = 0 ) return 1;

This tells us two things. First the calls stop when n=0. 

Second we can see that when n=0 the algorithm performs 

no multiplication.There fore

T(0) = 0

We use backward substitution to solve the equation

Mathematical Analysis of Recursive Algorithms(3)
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T(n) = T(n-1) + 1 substitute T(n-1) with T(n-2) +1

= [T(n-2) +1] +1 = T(n-2) +2   substitute T(n-2)  with T(n-3) +1

= [T(n-3) +1] +2 = T(n-3) +3 

….

T(n) = T(n-i) +i 

When i =  n  

T(n) = T(n-n) + n = T(0) + n = 0 + n = n

So we need n multiplication to compute F(n) 

Mathematical Analysis of Recursive Algorithms(4)


