
BLM 267 1

BLM-267BM267 - Introduction to Data

Structures

3. Principles of Algorithm Analysis

Ankara University

Computer Engineering Department
Bulent Tugrul

BM 267 2

• There are two kinds of algorithm efficiency: “time

effinciency” and “space effinciency”. Time

efficiency indicates that how fast an algorithm

runs; space efficiency deals with amount of space

it needs.

• Nowadays the amount of extra space required by

an algorithm is typically not of as much concern,

due to the improvements in memory capacity.

• We are going to concentrate on time efficiency but

analytical framework is applicable to analyzing

space efficiency as well.

Analysis Framework

BM 267 3

• It is logical to investigate an algorithm’s effinciency as a

function of some parameter “n” indicating the algorithm’s

input size.

• The input size will be the size of the lists or arrays for

problems such as sorting, searching, or finding the smallest

element.

Measuring an Input’s size

BM 267 4

• First approach: We can use time measurement (second, or
milllisecond) to measure an algorithm’s running time.

• There are drawbacks of this approach, such as speed of the
computer, quality of programmer, the compiler used in
generating the machine code.

• Second approach: We can count the number of times each
algorithm’s operations is executed. The thing to do is to
identify the most important operation of the algorithm,
called the basic operation, the operation contributing the
most of the total running time, and compute the number of
times the basic operaion is executed.

• As a rule, it is not difficult to identify the basic operation
of an algorithm: it is usually the most time-consuming
operation in the algorithm’s innermost loop.

Units for Measuring Running time

BM 267 5

• Ex: Sequential Search

int search(int a[0...n-1], int K)

{

int i; executes only once

for(i=0; i < n; i++) executes n times

if(a[i] = = K) executes at most n times

return i; at most once

return –1; at most once

}

Units for Measuring Running time(2)

BM 267 6

• Most sorting algorithms work by comparing elements of a
list with each other; for such algorithms the basic operation
is a key comparision.

• As another example algorithms for matrix multiplication
require two operations; multiplication and addition.
multiplication takes much more longer time than addition
so we can use the total number of multiplication as our unit
for algorithm measure.

• MatrixMultiplication(A[0..n-1, 0..n-1], B[0..n-1, 0..n-1])

for(i=0; i < n; i++)

for(j=0; j < n; j++)

C[i,j]=0;

for(k=0; k < n; k++)

C[i,j] = C[i,j] + A[i,k]*B[k,j];

Units for Measuring Running time(3)

BM 267 7

• Efficiency T(n) is investigated as a function

of some parameter n indicating problem’s

size.

• T(n) is computed as the number of times the

algorithm’s “basic operation” is executed.

• For matrix multiplication T(n)=n3

Units for Measuring Running time(4)

BM 267 8

Values of several functions important for analysis of

algorithms

BM 267 9

Worst, Best, and Average Case

•There are many algorithms for which running time depends

not only on an input size but also on a particular input.

•The running time of search algorithm can be quite different

for the same list size n. In the worst-case, when there are no

matching elements or the first matching element happens to

be the last one on the list, the algorithm makes the largest

number of key comparisons among all possible inputs of size

n:

T(n)worst= n.

•The worst-case efficiency of an algorithm is its efficiency for

the worst case input of size n, which is an input of size n for

which the algorithm runs the longest among all possible

inputs of that size.

BM 267 10

• In order to find the worst case efficiency of an algorithm,
we analyze the algorithm to see what kind of inputs yield
the largest value of the basic operation’s count among all
possible inputs of size n.

• The worst case analysis provides very important
information about an algorithm’s efficiency by bounding
its running time from above. In other words, it guarantees
that for any instance of size ‘n’ the running time will not
exceed T(n)worst .

• The best-case efficiency of an algorithm is its efficiency
for the best case input of size n, which is an input of size n
for which the algorithm runs the fastest.

• The best case does not mean that the smallest input; it
means the input of size n for which the algorithm runs the
fastest.

Worst, Best, and Average Case(2)

• For example, for search best case inputs will be of size n
with their first elements equal to search key. T(n)best=1

• The best case efficiency is not as important as worst case
efficiency.

• Neither worst-case nor best-case efficiency yields the
necessary information about an algorithms behavior on a
random input. The average-case efficiency provide us this
kind of information.

• To analyze the algorithm’s average-case efficiency’ we
must make some assumptions about possible inputs of size
n.

• The assumptions are:

– The probability of a successful search is equal to p (0
p 1)

– The probability of the first match occurring in the i th
position of the list is the same for every i.

Worst, Best, and Average Case(3)

BM 267 12

• In the case of a successful search, the probability of the
first match occurring in the i th position of the list is p/n for
every i.

• The number of comparisons made by the algorithm is i.

• In the case of unsuccessful search, the number of
comparisons is n with the probability of such a search
being (1-p).

• Tavg(n)= [1*p/n + 2*p/n+…+n*p/n] + n*(1-p)

= p/n*[1 + 2+…+n] + n*(1-p)

= p*(n+1)/2 + n(1-p)

If p=1(successful search) Tavg(n)= (n+1)/2

If p=0(unsuccessful search) Tavg(n)= n

Worst, Best, and Average Case(4)

BM 267 13

• General Plan for Analyzing Efficiency on Nonrecursive

Algorithms

– Decide on parameters indicating an input’s size

– Identify the algorithms basic operations(As a rule, it is

located in its inner loop)

– Check whether the number of times the basic operation

is executed. Investigate worst, best, and average case

efficiency.

– Set up a sum expressing the number of times the

algorithm's basic operation is executed.

– Using standard formulas and rules of sum

manipulation, find a closed form for the count

Mathematical Analysis of Nonrecursive Algorithms

BM 267 14

• Ex 1:

Algorithm MaxElement(A[0…n-1])

{ //Determines the largest element of the array

maxval=A[0];

for(i=1; i < n; i++)

if(A[i]>maxval)

maxval=A[i];

return maxval;

}

• The input size is the number of element in the array; n

• The operation that are going to be executed most often are in the

algorithm’s for loop.

Mathematical Analysis of Nonrecursive Algorithms(2)

BM 267 15

• There are two operations in loop’s body;the comparisons

A[i]>maxval and the assignment maxval=A[i]. We consider the

comparison as the basic operation because it is executed in each

repetition.

• The number of comparisons will be n-1.

• The worst, best and average case efficiency will be same.

• The algorithm makes one comparisons on each execution of the

loop; therefore

n-1

T(n) =  1 = n-1

i=1

Mathematical Analysis of Nonrecursive Algorithms(3)

BM 267 16

• Ex 1:

Algorithm UniqueElements(A[0…n-1])

{ //checks whether all the elements in a given array are distinct

for(i=0; i  n-2; i++)

for(j=i+1; j  n-1; j++)

if(A[i] = = A[j])

return false;

return true;

}

• The input’s size is the number of elements in the array: n

• The basic operation is comparison: A[i] = = A[j]

Mathematical Analysis of Nonrecursive Algorithms(4)

BM 267 17

• Worst case occurs in two situations: arrays with no equal
elements and the last two elements are the only equal pairs.

• For such inputs, one comparison is made for each repetition of
innermost loop therefore:

n-2 n-1 n-2 n-2

Tworst(n) =   1=  [(n-1)-(i+1) +1] =  (n-1+i)

i=0 j=i+1 i=0 i=0

=(n-1)*n / 2

In the worst case algorithm has to make (n-1)*n / 2 comparisons.

What is efficiency of matrix multiplication?

Mathematical Analysis of Nonrecursive Algorithms(5)

n-1 n-1 n-1

Solution: =    1 = n3

i=0 j=0 k=0

BM 267 18

• General Plan for Analyzing Efficiency on Recursive Algorithms

– Decide on parameters indicating an input’s size

– Identify the algorithms basic operations(As a rule, it is located in its inner

loop)

– Check whether the number of times the basic operation is executed.

Investigate worst, best, and average case efficiency.

– Set up a recurrence relation, with an initial condition, for the number of

times the basic operation is executed.

• Ex 1: Computing the factorial function F(n) = n!

n! = n*(n-1)*(n-2)*…*3*2*1 = n*(n-1)! for n  1 and 0!=1

we can compute F(n)= F(n-1)*n

Mathematical Analysis of Recursive Algorithms

BM 267 19

• Algorithm F(n)

{//Computes n! recursively

If (n = = 0)

return 1;

else

return F(n-1)*n; }

• We consider “n” as the algorithm input size.

• The basic operation of the algorithm is again multiplication.

• We denote T(n) the number of multiplications needed to
compute F(n).

T(n) = T (n – 1) + 1

to compute to multiply

F(n-1) F(n-1) by n

Mathematical Analysis of Recursive Algorithms(2)

BM 267 20

• How to solve a recurrence equation

We need a initial condition that tells us the value which

the sequence starts. We can obtain this value by

inspecting the condition that makes the algorithm stop its

recursive calls.

if (n = = 0) return 1;

This tells us two things. First the calls stop when n=0.

Second we can see that when n=0 the algorithm performs

no multiplication.There fore

T(0) = 0

We use backward substitution to solve the equation

Mathematical Analysis of Recursive Algorithms(3)

BM 267 21

T(n) = T(n-1) + 1 substitute T(n-1) with T(n-2) +1

= [T(n-2) +1] +1 = T(n-2) +2 substitute T(n-2) with T(n-3) +1

= [T(n-3) +1] +2 = T(n-3) +3

….

T(n) = T(n-i) +i

When i = n

T(n) = T(n-n) + n = T(0) + n = 0 + n = n

So we need n multiplication to compute F(n)

Mathematical Analysis of Recursive Algorithms(4)

