
BM 267 1

Ankara University

Computer Engineering Department
Bulent Tugrul

BM267 - Introduction to

Data Structures

2. Elementary Data Structures

Part 1

BM 267 2

• Review basic C knowledge

– Learn basic types, int, float, char.

– Learn how to write and call functions.

– Learn how to define C structures which put

pieces of information together.

– Learn to use pointers which refer to information

indirectly.

– Learn general approach to organize our C

programs.

Objectives

BM 267 3

• A data type is a set of values and collection of operations
on those values.

• In C, programs are built from just a few types of data

– Integers:short int, int, long int

– Floating-point numbers: float, double

– Characters:char

• When we perform an operation, we need to ensure that its
operands and result are of the correct type.

• C performs implicit type conversions.

• We can use cast, or explicit type conversions.

• For example, if x and N are integers

((float) x) / N the result of this operation is floating point

Basic Types

BM 267 4

Arithmetic operations + - * / % ++ --

Relational operations == < > != <= >=

Logical operations && ||

Bitwise operations & | ^ ~

Shift operations << >>

Operations on basic data types

BM 267 5

• We define functions to implement new operations on data.

• All C programs include a definition of the function main().

• All functions have a list of parameters, the list can be
empty and functions may return a value or nothing.

• In order to declare a function, you should give return type,
its name and paramater types.

• Ex: int lg(int);

• In a function definition, you should give names to the
arguments, do the desired computation using these
parameters.

• Definition and declaration of function could be in different
files, but you should include the declaration file into
definition file.

Functions

BM 267 6

#include <stdio.h>

int lg(int);

int main(){

int i, N;

for (i = 1, N = 10; i <= 6; i++, N *= 10)

printf("%7d %2d %9d\n", N, lg(N),

N*lg(N));

return 0;

}

int lg(int N){

int i;

for (i = 0; N > 0; i++, N /= 2) ;

return i;

}

Functions Example

BM 267 7

1. #include <stdlib.h>

2. #include <stdio.h>

3. #include <math.h>

4. typedef int numType;

5. numType randNum()

6. { return rand(); }

7. int main(int argc, char *argv[])

8. { int i, N = atoi(argv[1]);

9. float m1 = 0.0, m2 = 0.0;

10. numType x;

11. for (i = 0; i < N; i++)

12. {

13. x = randNum();

14. m1 += ((float) x)/N;

15. m2 += ((float) x*x)/N;

16. }

17. printf(" Average: %f\n", m1);

18. printf("Std. deviation: %f\n", sqrt(m2-m1*m1));

19. }

Functions Example –2 Average and

Standard Deviation of N integers

BM 267 8

• As it is recommended, you can split your program

into three files.

• .h file: An interface, which defines the data

structure and declares the funtions to be used to

manipulate.

• .c: An implementation of the functions declared in

the .h file (must include .h file).

• A client program that uses the functions declared

in the interface (must include .h file). This file

must implement main() function.

Program Organization

BM 267 9

Num.h
1. typedef int numType;

2. numType randNum();

Num.c
1. #include <stdlib.h>

2. #include “Num.h”

3. numType randNum()

4. { return rand(); }

Client.c
1. #include <stdio.h>

2. #include <math.h>

3. #include “Num.h”

4. int main(int argc, char *argv[])

5. { implementation of main }

Program Organization (2)

BM 267 10

• We need data structures that allow us to handle
collections of data. Arrays and struct allow us to
organize data.

• Structs define a new type of data.

• Structs are aggregate types that we use to define
collections of data. The members of a struct can be
different type, it can even be another struct, but
arrays can hold only one type of data.

• Assume that we need a new type which is callled
Point, unfortunately, there is no such a built-in
type in C standard.

• But C allows us to define such a mechanism using
“struct”.

Structs

BM 267 11

• Accordingly, we can write;

struct Point {float x; float y;};Do
not forget the semicolon.

• struct Point a, b; declares two Point
variables.

• We can refer each member of the Point struct by
their names. For example

a.x=1.0; a.y=1.0; b.x=4.0;

b.y=5.0;

• We can also pass structs as arguments of a
functions. For example

Structs(2)

BM 267 12

Point.h

• typedef struct { float x; float y; }

point;

• float distance(point a, point b);

Point.c

• #include <math.h>

• #include "Point.h"

• float distance(point a, point b)

• { float dx = a.x - b.x, dy = a.y -

b.y;

• return sqrt(dx*dx + dy*dy);

• }

Structs(3)

BM 267 13

• C pointers provides us to manipulate data
indirectlly. Basically pointer is a reference to an
object in the memory.

• In order to declare a pointer, you should first give
its type and then put a “*” before giving the
variables name. Ex int *a_Ptr;

• We can declare pointers to any type of data.

Ex: float *f_Ptr, Point *point_Ptr.

• The “&” operator returns the adreess of a
variable.

• When you want to initialize a pointer you can use
“&” operator. Ex int a, *a_Ptr=&a;

Pointers

BM 267 14

• C functions returns only one value, but pointers
allow us to manipulate more variables.

• Ex: polar(float x, float y, float*r,
float* theta)

{

*r = sqrt(x*x+y*y);

*theta= atan2(y,x);

}

• The function call polar(1.0, 1.0, &a, &b) will
effect the values of a and b. ‘a’ will become
sqrt(x*x+y*y) and ‘b’ will become atan2(y,x);

Pointers(2)

BM 267 15

• An array is fixed collection of same type

data that are stored contiguously in the

memory.

• a

• You can declare an array in this way:

type name[const unsigned int];

• You can reach the element of an array by its

index. Ex: a[i];

Arrays

0 1 2 3 4

BM 267 16

• Dynamic memory allocation allow us to obtain blocks of
memory as needed during execution.

• Using dynamic memory allocation, we can design data
structures that grow and shrink.

• To allocate memory dynamically, we will need to call one
of the three memory allocation functions declared in the
<stdlib.h> header.

 malloc: allocates a block of memory, but doesn’t initialize it.

 calloc: allocates a block of memory and clears it.

 realloc: Resizes a previously allocated block of memory.

• malloc returns a value of type void*

• When we call a memory function, it may not allocate
enough memory, in this case it returns NULL, we must test
this situation.

Dynamic Memory Allocation

BM 267 17

• Ex: p = malloc(10000);

İf(p==NULL)

// allocation failed, take
appropriate action;

• We use sizeof operator to calculate the amount of space
required.

• Ex: Point * p = malloc(sizeof(Point)) or

Point * p = malloc(n*
sizeof(Point)) it allocates n Point object.

• Once it points to a dynamically allocated block of memory,
we can use p as if it is an array.

• for(int i = 0; i < n; i++)

p[i].x = i;

p[i].y = i;

Dynamic Memory Allocation(2)

BM 267 18

• free() Deallocates memory allocated by malloc

• Takes a pointer as an argument

• free (ptr);

Dynamic Memory Allocation(3)

