BMZ267 - Introduction to
Data Structures

2. Elementary Data Structures
Part 1

Ankara University

Computer Engineering Department
Bulent Tugrul

BM 267 1

» Review basic C knowledge
— Learn basic types, Int, float, char.
— Learn how to write and call functions.

— Learn how to define C structures which put
pieces of information together.

— Learn to use pointers which refer to information
Indirectly.

— Learn general approach to organize our C
programs.

BM 267 2

Basic Types

A data type is a set of values and collection of operations
on those values.

In C, programs are built from just a few types of data
— Integers:short int, int, long int

— Floating-point numbers: float, double

— Characters:char

When we perform an operation, we need to ensure that its
operands and result are of the correct type.

C performs implicit type conversions.

We can use cast, or explicit type conversions.

For example, if x and N are integers

((float) x)/ N the result of this operation is floating point

BM 267 3

Operations on basic data types

Arithmetic operations
Relational operations
Logical operations
Bitwise operations

Shift operations

.|._

&&

&

<<

BM 267

>>

Functions

We define functions to implement new operations on data.
All C programs include a definition of the function main().

All functions have a list of parameters, the list can be
empty and functions may return a value or nothing.

In order to declare a function, you should give return type,
Its name and paramater types.

Ex: int Ig(int);
In a function definition, you should give names to the

arguments, do the desired computation using these
parameters.

Definition and declaration of function could be in different
files, but you should include the declaration file into
definition file.

BM 267 3)

Functions Example

#include <stdio.h>
int lg(int);
int main () {
int 1, N;
for (1 = 1, N = 10; i <= 6; i++, N *= 10)

printf ("%$7d %$2d %9d\n", N, 1lg(N),
N*1g(N)) ;

return 0;

}
int lg(int N) {
int 1i;
for (i = 0; N > 0; i++, N /= 2) ;

return 1i;

BM 267 6

Functions Example —2 Average and

Standard Deviation of N integers

1. #include <stdlib.h>

2. #include <stdio.h>

3. #include <math.h>

4. typedef int numType;

5. numType randNum ()

o. { return rand(),; }

7. int main(int argc, char *argv([])

8. { int 1, N = atoi(argv[l]);

9. float ml = 0.0, m2 = 0.0;

10. numType X;

11. for (1 = 0; i < N; 1i++)

12. {

13. X = randNum{() ;

14. ml += ((float) x)/N;

15. m2 += ((float) x*x)/N;

16 }

17. printf (" Average: $f\n", ml);
18. printf ("Std. deviation: %f\n", sgrt(m2-ml*ml));
19. }

BM 267 7

Program Organization

« As it Is recommended, you can split your program
Into three files.

« .|h file: An Interface, which defines the data
structure and declares the funtions to be used to
manipulate.

 .c. An implementation of the functions declared in
the .h file (must include .h file).

A client program that uses the functions declared
In the interface (must include .h file). This file
must implement main() function.

BM 267 8

Program Organization (2)

Num.h

1. typedef int numType;

2. numType randNum() ;

Num.c

1. #include <stdlib.h>

2. #include “Num.h”

3. numType randNum ()

4, { return rand(); }
Client.c

1. #include <stdio.h>

2. #include <math.h>

3. #include “Num.h”

4 int main(int argc, char *argv|[])
5 { 1implementation of main }

BM 267

Structs

We need data structures that allow us to handle
collections of data. Arrays and struct allow us to
organize data.

Structs define a new type of data.

Structs are aggregate types that we use to define
collections of data. The members of a struct can be
different type, it can even be another struct, but
arrays can hold only one type of data.

Assume that we need a new type which is callled
Point, unfortunately, there is no such a built-in
type in C standard.

But C allows us to define such a mechanism using
“struct”.

BM 267 10

Structs(2)

 Accordingly, we can write;

struct Point {float x; float y;}; €DO
not forget the semicolon.

struct Point a, b; declares two Point
variables.

We can refer each member of the Point struct by
their names. For example

a.x=1.0; a.y=1.0; b.x=4.0;
b.y=5.0;

We can also pass structs as arguments of a
functions. For example

BM 267 11

Structs(3)

Point.h

e typedef struct { float x; float y; }
polint;

e float distance(point a, point b);
Point.c

e #include <math.h>

#include "Point.h"

float distance(point a, poilint b)

{ float dx = a.x - b.x, dy = a.y -
b.y;

. return sqgrt (dx*dx + dy*dy);

BM 267 12

« C pointers provides us to manipulate data
Indirectlly. Basically pointer is a reference to an
object in the memory.

 |n order to declare a pointer, you should first give
its type and then put a “*” before giving the
variables name. EX int *a Ptr;

« \We can declare pointers to any type of data.
EX: float *f Ptr, Point *point Ptr.

e The “&” operator returns the adreess of a
variable.

* When you want to initialize a pointer you can use
“&” operator. Ex int a, *a Ptr=s&a;

BM 267 13

Pointers(2)

» C functions returns only one value, but pointers
allow us to manipulate more variables.

e EX:polar(float x, float vy, float*r,
float* theta)

{

*r = sqrt(x*x+y*vy) ;
*theta= atan2 (v, x);
}

« The function call polar(1.0, 1.0, &a, &b) will
effect the values of a and b. ‘a’ will become
sqrt(x*x+y*y) and ‘b’ will become atan2(y,x);

BM 267

14

» An array Is fixed collection of same type
data that are stored contiguously in the
memory.

° a 0 1 2 3 4

 You can declare an array In this way:
type name|[const unsigned int];

* You can reach the element of an array by Its
Index. EX: a[l];

BM 267 15

Dynamic Memory Allocation

Dynamic memory allocation allow us to obtain blocks of
memory as needed during execution.

Using dynamic memory allocation, we can design data
structures that grow and shrink.

To allocate memory dynamically, we will need to call one
of the three memory allocation functions declared in the
<stdlib.h> header.

» malloc: allocates a block of memory, but doesn’t initialize it.

» calloc: allocates a block of memory and clears it.

> realloc: Resizes a previously allocated block of memory.

malloc returns a value of type void*

When we call a memory function, it may not allocate
enough memory, in this case it returns NULL, we must test
this situation.

BM 267 16

Dynamic Memory Allocation(2)

EX:p = malloc(10000);
If(p==NULL)

// allocation failed, take
appropriate action;

We use sizeof operator to calculate the amount of space
required.

EX: Point * p = malloc(sizeof (Point)) or
Point * p = malloc(n* _
sizeof (Point)) Itallocates n Point object.

Once It points to a dynamically allocated block of memory,
we can use p as If it is an array.

e for(int 1 = 0; 1 < n; i++)

pli].x = 1;
pli].y = 1;

BM 267 17

Dynamic Memory Allocation(3)

« free() Deallocates memory allocated by malloc

« Takes a pointer as an argument
« free (ptr);

BM 267 18

