
BM267 - Introduction to Data

Structures

Ankara University

Computer Engineering Department
Bulent Tugrul

4. Abstract Data Types

BM267 2

• A container of objects that are inserted and removed

according to the last-in-first-out (LIFO) principle.

• Objects are inserted into a stack in at any time, but only the

most recently inserted object (last one!) can be removed at

any time.

Pushdown Stack ADT

TOP

BOTTOM

enter exit

BM267 3

Web browser:

• Stores the addresses of recently visited sites on a stack.

• Each time a user visits a new site, the address of the site is

pushed into the stack of addresses.

• Using the 'back' button the user can pop back to previously

visited sites!

Text editors:

• Powerful text editors keep text changes in a stack.

• The user can use the undo mechanism to cancel recent editing

operations

Pushdown stacks in action

BM267 4

Other operations

• isEmpty: Checks if the stack is empty

• isFull: checks if the stack is full (if there is an

implementation dependent limit)

The fundamental operations involved in a stack are

“push” and “pop”.

• push: adds a new element on top of the stack

• pop: removes an element from the top of the stack

It is an error to pop an element from an empty stack.

It is also an error to push an elemet to a full stack.

Pushdown stack operations

BM267 5

Pushdown stack ADT implementation

A stack can be implemented with an array of objects

easily.

• The maximum size of the stack (array) must be

estimated when the array is declared.

• Space is wasted if we use less elements.

• We cannot "push" more elements than the array can

hold (overflow).

If the maximum stack size cannot be be estimated, use

a linked list to implement the stack.

BM267 6

Pushdown stack ADT implementation

Interface for pushdown stack ADT for objects of type

‘Item’:

void STACKinit(int);

int STACKempty();

void STACKpush(Item)

Item STACKpop();

BM267 7

Pushdown stack ADT implementation

Note that, if an array is used, you can visualize (and

implement) stack in several ways.

Top
0

1

N-2

N-1

Top

N-1

N-2

1

0

Top points to next available element

Top
0

1

N-2

N-1

Top points to last

inserted element

BM267 8

Pushdown stack ADT implementation

void STACKinit(int);

• Initializes an array of Items of specified size.

• Item (structure) is known by both the client and the

implementation

• Must have a pointer (or array index) that points the next available

(or last filled) slot on the stack.

Top

BM267 9

• Need pointer initialized to (index) 0, since we
adopted the convention that top refers to the next

free place in the stack, where a push will be written.

• The last item pushed onto the stack is therefore at
top-1.

• Delete item: We have to decrease top by 1 before
we pop an item from the stack.

• Insert item: We have to push the item first then
increment top.

Pushdown stack ADT implementation

0

Convention:

BM267 10

Pushdown stack ADT implementation

• Need pointer initialized to (index) -1, since we
adopted the convention that top refers to the last item

inserted in the stack

• The last item pushed onto the stack is therefore at
top.

• Delete item: We have to remove the item first, then
decrease top by 1.

• Insert item: We have to increment top before
pushing the item.

Convention:

BM267 11

Pushdown stack ADT implementation

Item pop(); Remove the item from the top of the stack.

Precondition: The stack is not empty

Postcondition: Either the stack is empty or the stack has a

new topmost item from a previous push.

void push(Item); Insert new item at the top of the stack.

Precondition: The stack is not full.

Postcondition: The stack has a new item at the top.

int STACKempty(); Returns a logical value depending on

the number of elements in the stack.

Precondition: The stack has 0 N Max elements

Postcondition: The stack has N elements.

BM267 12

Top

Pushdown stack ADT implementation

1

push(1) push(2)

1

2

push(3)

1

2

3

1

2

pop()

= 3

pop()

= 2

1

BM267 13

Example: Using a Stack to compute a Hex Number

'A'

'F'

26 / 16 = 1

Rem: 10

Push (Hex 10)

'1'

'A'

'F'

1 / 16 = 0

Rem: 1

Push (Hex 1)

'1'

'A'

'F'

pop() = '1'

String = 1

'A'

'F'

pop() = 'A'

String = 1A

'F'

pop() = '1'

String = 1AF

'F'

431 / 16 = 26

Rem: 15

Push (Hex 15)

'

Stack: Empty

Stack: Empty

BM267 14

Example: Array Implementation of a Stack
int *s;

int Top;

void STACKinit(int maxN){

s = (int *) malloc(maxN * sizeof(int));

Top = 0; }

int STACKempty(){

return Top == 0; }

void STACKpush(int item){

s[Top++] = item; }

int STACKpop(){

return s[--Top]; }

BM267 15

Example: Postfix Calculation

• Suppose that we need to find the value of a simple arithmetic

expression involving multiplication and addition of integers,

such as

5 * (((9 + 8) * (4 * 6)) + 7)

• The calculation saves intermediate results: For example, if we

calculate (9 + 8), then we have to save the result.

• A pushdown stack is the ideal mechanism for saving

intermediate results in a such calculation.

• We can convert to arithmetic expression into postfix

representation. In postfix representation each operator appears

after its two operand.

(5 + 9) 5 9 +

BM267 16

Example: Postfix Calculation

5 9 8 + 4 6 * * 7 + *

5 (9 + 8) 4 6 * * 7 + *

5 17 4 6 * * 7 + *

5 17 (4 * 6) * 7 + *

5 17 24 * 7 + *

5 (17 * 24) 7 + *

5 408 7 + *

5 (408 + 7) *

5 415 *

(5 * 415)

2075

BM267 17

Top

Example: Postfix Calculation

6

5

4

3

2

1

0

Top = 0

5

6

5

4

3

2

1

0

push(5)

Top = 1

5

9

6

5

4

3

2

1

0

push(9)

Top = 2

5

9

8

6

5

4

3

2

1

0

push(8)

Top = 3

5 9 8 + 4 6 * * 7 + *

BM267 18

5

9

6

5

4

3

2

1

0

pop() = 8

Top = 2

5

6

5

4

3

2

1

0

pop() = 9

Top = 1

5

17

6

5

4

3

2

1

0

push(17)

Top = 2

5

17

4

push(4)

Top = 3

5 9 8 + 4 6 * * 7 + *

Example: Postfix Calculation

BM267 19

5

17

4

6

6

5

4

3

2

1

0

push(6)

Top = 4

5

17

4

6

5

4

3

2

1

0

pop() = 6

Top = 3

5

17

6

5

4

3

2

1

0

pop() = 4

Top = 2

5

17

24

push(24)

Top = 3

Example: Postfix Calculation

5 9 8 + 4 6 * * 7 + *

BM267 20

5

17

6

5

4

3

2

1

0

pop() = 24

Top = 2

5

6

5

4

3

2

1

0

pop() = 17

Top = 1

5

408

6

5

4

3

2

1

0

push(408)

Top = 2

5

408

7

push(7)

Top = 3

5 9 8 + 4 6 * * 7 + *

Example: Postfix Calculation

BM267 21

5

408

6

5

4

3

2

1

0

pop() = 7

Top = 2

5

6

5

4

3

2

1

0

pop() = 408

Top = 1

5

415

6

5

4

3

2

1

0

push(415)

Top = 2

5

pop()=415

Top = 1

5 9 8 + 4 6 * * 7 + *

Example: Postfix Calculation

BM267 22

6

5

4

3

2

1

0

pop() = 5

Top = 0

2075

6

5

4

3

2

1

0

push(2075)

Top = 1

5 9 8 + 4 6 * * 7 + *

Example: Postfix Calculation

BM267 23

Example: Array Implementation of a Stack
/* Postfix-expression evaluation */

int main(int argc, char *argv[]){

char a[] = "5 11 * 5 + 2 *";

int i, array_size = strlen(a);

STACKinit(array_size);

for (i = 0; i < array_size; i++) {

if (a[i] == '+')

STACKpush(STACKpop()+ STACKpop());

if (a[i] == '*')

STACKpush(STACKpop() * STACKpop());

if ((a[i] >= '0') && (a[i] <= '9'))

STACKpush(0);

while ((a[i] >= '0') && (a[i] <= '9'))

STACKpush(10*STACKpop() + (a[i++]-'0')); }

printf("%d \n", STACKpop());

return 0;}

BM267 24

Queues

• A queue is a data structure that items can be inserted only at

one end (called rear) and removed at the other end (called the

front).

• The item at the front end of the queue is called the first item.

rear front

enter

exit

9371

BM267 25

Other operations

• isEmpty: Checks if the queue is empty

• isFull: checks if the queue is full (if there is an

implementation dependent limit)

• put: adds a new element at the rear of the queue

• Increase the number of element in the queue by 1.

• get: removes an element from the front of the queue

• Decrease the number of elements in the queue by 1

It is an error to get an element from an empty queue.

It is also an error to put an element to a full queue.

Queue operations

Fall 2005 BM267 26

Queue implementation

A queue can be implemented with an array of objects

easily.

• The maximum size of the queue (array) must be

estimated when the array is declared.

• Space is wasted if we use less elements.

• We cannot "put" more elements than the array can

hold (overflow).

If the maximum queue size cannot be be estimated,

use a linked list to implement the queue.

Fall 2005 BM267 27

Queue ADT implementation

Interface for queue ADT for objects of type ‘Item’:

void QUEUEinit(int);

int QUEUEempty();

void QUEUEput(Item)

Item QUEUEget();

(Compare these operations with stack operations)

They are almost the same:

• push, put: insertion

• pop, get: removal

Fall 2005 BM267 28

Queue ADT implementation

void QUEUEinit(int);

• Initializes an array of Items of specified size.

• Item (structure) is known by both the client and the

implementation

• Must have two pointers (or array indices) that point to the rear

and the front of the queue.

rear

1 4 8 3 2 5 7 6

front

Fall 2005 BM267 29

Queue Linked List implementation

• Elements can be added and removed in any order

• Therefore it is easier to use a singly-linked list as a queue,

provided two extra pointers are kept.

9 13 14 22

• Or better yet, use a doubly linked list, to maintain the head

pointer easily.

2812 2215

front

rear

rear

front

Fall 2005 BM267 30

Queue Array implementation

? ? ? ? ?

frontrear

Initial state

front = 0 rear = -1

1 ? ? ? ?

front rear

put(1)

front = 0 rear = 0

1 5 ? ? ?

rear

put(5)

front = 0 rear = 1
front

First Approach(not efficient!!)

Fall 2005 BM267 31

5 3 4 ? ?

rear

get() = 1

front = 0 rear = 2

Queue Array implementation

1 5 3 ? ?

rear

put(3)

front = 0 rear = 2

1 5 3 4 ?

rear

put(4)

front = 0 rear = 3

front

front

front

Queue Array implementation

3 4 ? ? ?

rear

get() = 5

front = 0 rear = 1

front

3 4 8 ? ?

rear

put(8)

front = 0 rear = 2

front
front always “0”

rear is initially “–1” and can be at most “N-1”

Observations: put(int) adds 1 to rear

get() subtracts 1 from rear but needs some

elements to be shifted.

if rear = -1 queue is empty

if rear = N-1 queue is full

Fall 2005 BM267 33

Queue Array implementation

? ? ? ? ?

front rear

Initial state

front = 0 rear = 0

? 1 ? ? ?

front rear

put(1)

front = 0 rear = 1

? 1 5 ? ?

rear

put(5)

front = 0 rear = 2

front

Second Approach(more efficient)

Fall 2005 BM267 34

? ? 5 3 4

rear

get() = 1

front = 1 rear = 4

Queue Array implementation

? 1 5 3 ?

rear

put(3)

front = 0 rear = 3

? 1 5 3 4

rear

put(4)

front = 0 rear = 4

front

front

front

Fall 2005 BM267 35

? ? ? 3 4

rear

get() = 5

front = 2 rear = 4

front

Queue Array implementation

9 ? ? 3 4

rear

put(9)

front = 2 rear = 0

front

9 10 ? 3 4

rear

put(10)

front = 2 rear = 1

front

Fall 2005 BM267 36

Queue Array implementation

Allocate maxSize+1 element (1 for front)

Initially Queue empty front = 0 rear = 0

Observations: Put(int) adds 1 to rear and inserts to array[rear] = item

Get() adds 1 to front and then returns the item

if “rear + 1 = front” Queue is full

Fall 2005 BM267 37

Queue Array implementation
void QUEUEinit(int maxN){

q = (int *)malloc((maxN+1)*sizeof(int));

N = maxN+1;

front = 0;

rear= 0; }

int QUEUEempty(){

if(rear == front)

return 1;

return 0; }

int QUEUEfull(){

if(((rear + 1) % N) == front)

return 1;

return 0; }

Fall 2005 BM267 38

Queue Array implementation
void QUEUEput(int item){

if(QUEUEfull())

printf(" Queue is full!!!");

else {

rear = (rear + 1) % N;

q[rear] = item;} }

int QUEUEget(){

if(QUEUEempty()){

printf(" Queue is empty!!!");

return -1;}

else{

front = (front + 1) % N;

return q[front];} }

Fall 2005 BM267 39

ADT observations

Pushdown stacks and FIFO queues are special instances of the

generalized queue ADT.

Generalized queue ADT can take many forms depending on the

element insertion and removal policy.

• Pushdown stack: remove the last item.

• FIFO queue: remove the oldest item.

• Random queue: remove a randomly selected item.

• Priority queue: Remove the item with highest (lowest) value.

• Symbol table: remove item whose key is given.

• De-queue (double-ended queue): add/remove items at either end.

Fall 2005 BM267 40

ADT duplicate elements

ADT's also differ in their element acceptance criteria.

"Is element duplication allowed?"

9 14 14 22

Some policies are:

• Let the client (user) decide.

• Duplicates are allowed (triplicates as well...)

• Duplicates are never allowed, new element is ignored.

• Duplicates are never allowed, new element replaces the old.

• Duplicates are never allowed, retain the more desirable element.

Fall 2005 BM267 41

ADT duplicate elements

If duplication is not allowed,

• A test function is needed to determine item existence

(whether an item is already in the data structure). Sometimes

a second array may be used for this purpose.

• A test function is needed for testing item equality.

Fall 2005 BM267 42

If the keys are unique and relatively small, use a second array:

1 12 14 22

1 0 ... 1 0 1 0 ... 1 0 0 0

1 2 ... 12 13 14 15 ... 22 ...

ADT duplicate elements

Note that the linked list shown above is an ADT: it may actually

be implemented using an array.

