
BLM267 1

BM267 - Introduction to Data 

Structures

Ankara University

Computer Engineering Department

3. Elementary Data Structures 



BLM267 2

Learn about elementary data structures - Data structures 

that form the basis of more complex data structures.

• Structure: Combines different data types as a unit.

• Array: Combines many instances of the same data type 

as a unit.

• Linked list:  allows insertions and removals anywhere. 

Implementation using dynamic allocation vs fixed 

arrays. 

• String: allows insertions and removals of substrings 

hence the size changes dynamically.

Objectives



BLM267 3

• Object = any data type (elementary or aggregate) 

that has memory allocated for it (we talk about 

concrete types now). 

• Node: object that contains a pointer to a object of 

the same type

• Nodes can be linked together to form useful data 

structures such as lists, queues, stacks and trees

• By convention, a NULL pointer (value 0) is used to 

indicate that the link is not meaningful.

Self-referential objects



BLM267 4

Node

• A node in the simplest form has two fields:

LinkData

• A node can have two or more links, each pointing to 

a node.

Link LinkData

• Link field always contains information that 
identifies the successor node.

• This information may be a pointer (memory address), 
or an index (into an array).



BLM267 5

Node

• Data field can contain any data type.

• Link field points to a node (it contains a memory 
address)

Data 0 Data NULL Data

Data Link

Data

• If link field has a value of 0 (NULL or NIL) then 
node does not have a successor.

• Then, “the link is terminated”:



BLM267 6

Node

A node for int values defined in C:
struct node

{

int data;

node * next;

};

• You can define an array of such structures:

struct node array[N];

• Or allocate each node separately:

malloc(sizeof( struct node));

data next



BLM267 7

• Using a pointer before set

q = (node*)malloc(sizeof(node));

q->next->data = 7;  /* ERROR */

• Dereferencing a NULL pointer

struct node *q = NULL;

q->data = 5;        /* ERROR */

0

ptr

• Using a freed element

free(q->next);

q->next->data = 6;  /* PROBLEM */

node

Programming errors with pointers



BLM267 8

Linked List (as an elementary data type)

The simplest kind of linked list is a linear chain of links 
(pointers) to nodes of the same type.

More sophisticated linked lists maye have several chains 
of pointers.

A linked list can only be reached thru its handle(s).

Handles are called the head pointer (or list-head), tail-
pointer (or list-end).



BLM267 9

Singly linked list

• Each node points to the next

• Terminates with a null pointer

• Only traversed in one direction

Circular, singly linked

• Pointer in the last node points back to the first node

Doubly linked list

• May have two “start pointers” – head element and tail element

• Each node has  forward / backward pointers

• Allows traversals both forwards and backwards

Circular, doubly linked list

• Forward pointer of the last node points to the first node and 

backward pointer of the first node points to the last node

Linked list - most common types



BLM267 10

Singly-linked list

• Consists of a sequence of nodes with one link field.

12 23 26 44

• The first node in the list is called the head node.

• To access a node, the predecessor of the node must 
be available.

• To access the head node, its address is kept in a 
special pointer named head (or listhead, LH) 
pointer outside the list.

LH



BLM267 11

Singly-linked list

List operations:

• Insert a new item (pointer to the new node is given)

• Delete an item (the key value of the item is given)

• Search for an item (the key value is given)

Normally, only the listhead (LH) is given.

There is no information on:

• The number of nodes (might be 0, 1 or any number N).

• The value in each node.



BLM267 12

Let’s assume that the items are always added to the 

beginning of the list.

Deleting an item may require the traversal of the entire 

list.

Searching for an item may require the traversal of the 

entire list

Singly-linked unordered list

22 13 26 9



BLM267 13

Singly-linked unordered list

Adding a node to an unordered list:
LH

• List head pointer (LH) is given,

• A pointer to the new node (newNode) is given  

12 ?

newNode

12

LH

The desired result is:



BLM267 14

Singly-linked unordered list

C code for creating a node:

struct LNODE
{

int val;
LNODE * next;

};

LNODE * LH;

LNODE * newNode;

newNode = malloc(sizeof(LNODE));



BLM267 15

C code for adding a node to the beginning of the list:

Caller code: LH = AddNode(LH, newNode);

Where: 
LNODE * AddNode(LNODE* head, LNODE*  newNode)

{  newNode->next = head;

return newNode;

}

Caller code: AddNode(&LH, newNode);

Where: 
void AddNode(LNODE** head, LNODE* newNode)

{  newNode->next = *head;

*head = newNode;

}

• Let the caller update the listhead pointer

• Let the called function update the listhead pointer

Singly-linked unordered list



BLM267 16

Singly-linked unordered list

Deleting a node:

• List head pointer (LH) is given,

• The key value of the item (key) is given   (Assume 13)

22 13 26 9

The desired result is:

22 13 26 9

Modified Deleted



BLM267 17

Singly-linked unordered list

For deletions, need to keep two pointers, pointing to the 

modified and deleted items.

Special cases:   In case of deleting the first item, listhead 

pointer LH must be updated. 

We will assume that an item with key always exists in the 

list. 



BLM267 18

C code for deleting a node whose data value is given:

Caller code: LH = DeleteNode(LH, key);

Where: 
LNODE * DeleteNode(LNODE * head, int key)

{  

LNODE * node = head; 

LNODE * prev = NULL;

while (node->val != key)

{  prev = node;

node = node->next;

}

if (!prev)     (Deleting the first node?)    
head = node->next; 

else

prev->next = node->next;

free (node);

return head;   (Return listhead)
}

• Let the caller update the listhead pointer

Singly-linked unordered list



BLM267 19

Caller code: DeleteNode(&LH, key);

Where: 
void DeleteNode(LNODE ** head, int key)

{  

LNODE * node = head; 

LNODE * prev = NULL;

while (node->val != key) (Find node to delete) 
{  prev = node;

node = node->next;

}

if (!prev)     (Deleting the first node?)    
*head = node->next; 

else

prev->next = node->next;

free (node);

}

• Let the called function update the listhead pointer

Singly-linked unordered list



BLM267 20

Singly-linked unordered list

Search for a value:

• List head pointer (LH) is given,

• The key value (key) is given

22 13 26 9

The desired result is:

• TRUE : Value is in the list

• FALSE: Value is not in the list



BLM267 21

Singly-linked unordered list

Caller code:

if(Search(LH,12)) /*Search for an item with value 12 */

... /* Value found */

else

... /* Value not found */

Where:
int Search(LNODE * node, int key)

{   

while (node)

if (node->val == key)

return 1; /* Value found */

else

node = node->next;

return 0;      /* Value not found */ 

}



BLM267 22

Keep the items on the list in a sorted order, based on 

data value in each node

Advantages:

• already sorted, no need for sort operation

• operations such as delete, find, etc. need not search to 

the end of the list if the item is not in list

Disadvantages

• Insert operation must search for the right place to add 

element (slower than simply adding at beginning)

Sorted lists

9 13 14 22



BLM267 23

Singly-linked ordered list

Adding a node to an ordered list:
LH

• List head pointer (LH) is given,

• A pointer to the new node is given  

12 ?

The desired result is:

10 12 14 20

Modified Added

10 14 20

Initial configuration



BLM267 24

• Last node references the first node

• Every node has a successor

• No node in a circular linked list contains NULL

Circular singly-linked list

Checking if  the circle is completed:

if(node->next == list) ...  Pointer comparison



BLM267 25

• Dummy head node is always present, even when 
the linked list is empty.

• Insertion and deletion algorithms use two pointers, 
prev and node, 

• For empty lists, initialize prev to reference the 
dummy head node, rather than NULL.

• Move both pointers together.

Singly-linked list with dummy head node

prev     node



BLM267 26

Doubly-linked list

llink data rlink

A double link node for int values defined in C:
struct LNODE

{

LNODE * llink;

int val;

LNODE * rlink;

};

prev data next

2812 2215



BLM267 27

Doubly-linked ordered list

2812 2215

Adding a node to an ordered list:
LH

• List head pointer (LH) is given,

• A pointer to the new node is given  

14

14

2812 2215



BLM267 28

Doubly-linked ordered list

Adding a node to an ordered list

(Assuming LH is global)
Node = LH                    (Initialize node pointer)
WHILE (node  NULL)   

{

IF (node->val > val)       (Find the location to insert)

{  newnode->rlink  node

newnode->llink  node->llink

node->llink  newnode

IF (newnode->llink == NULL)   (Adding as first?)
LH = newnode                (Update listhead)

ELSE

(newnode->llink)->rlink  newnode  

break     

}

ELSE node  node->rlink;  (keep trying)
}

valnewNode



BLM267 29

Deleting a node:

• List head pointer (LH) is given,

• The key value of the item (val) is given   (Assume 15)

Doubly-linked ordered list

2812 2215

Modified Deleted

2812 2215

Modified



BLM267 30

Implementing lists using arrays

• Arrays have fixed number of elements (check for 

overflow).

• Pointers now become array indices (of type integer).

• Since C arrays start with index 0,  we will assume -1

corresponds to the NULL pointer.

• The last used array element need to be maintained.

• Here is the NODE structure for use with arrays in C:
struct NODE
{

int val;
int next;

};



BLM267 31

Implementing lists using arrays (2)

Note that we have to distinguish unused array elements.  

We will accept the convention that a link value of -2 

denotes an unused array element.

Therefore, the array has to be initialized. 

for(i=0; i<N; i++) node[i].next = -2;

NODE node[N];

int LH = -1;

A NODE array of size N,           

(N is a compile-time constant) 

-2

-2

-2

-2

LH

-1

-1  means:  ‘the chain ends here’, 

-2  means:  ‘node is available (not currently used).

Any other value means: 1) ‘node is currently in the list’ and,    

2) ‘is followed by node whose index is here’.



BLM267 32

Implementing lists using arrays (3)

Caller Code:     index = FindEmpty( );

if (index == -1)

{ /* No more space on array */}

else

{ /* Use  node[index] */ }   

... 

Where: int FindEmpty()

{ int i;

for(i=0; i<N; i++)

if(node[i].link == -2)

return i;  

return -1;

}

We will also need to find an empty element to 

insert the new node (instead of using malloc()).



BLM267 33

Caller code:
AddNode(newNode);

Where: 
void AddNode(int newVal)

{  int index;

index = FindEmpty( );

if (index == -1)

{ /* No more space on array */  }

else

{ node[index].val  = newVal;

node[index].next = LH;

LH = index;

}

}

C code for adding a node to the beginning of the list, 

assuming  node[] and LH are defined globally.

Implementing lists using arrays (4)



BLM267 34

C code for deleting a node, assuming  node[] and LH

are defined globally and  val always exists in the list.

Caller code:   DeleteNode(val);

Where:           void DeleteNode(int delVal)

{ int index=LH;

while(!(index < 0))

if(node[index].val == delVal)

break;

else

{  prev = index;

index = node[index].next;

}

if(prev < 0) (Deleting the first node?)

LH = node[index].next;

else

node[prev].next = node[index].next; 

node[index].next = -2;  (Mark as empty)

}

Implementing lists using arrays (5)



BLM267 35

Implementing lists using arrays (6)

C code for searching a value in an unordered list, 

assuming  node[] and LH are defined globally.

Caller code:   if(SearchVal(val)) /*Search for an item with value val */

... /* Value found */

else

... /* Value not found */

Where:           int SearchVal(int val)

{ int index=LH;

while(!(index < 0))

if(node[index].val == val)

return 1;   /* Success */

else   /* keep trying */

index = node[index].next;

return 0;  /* Failure*/

}



BLM267 36

Space (storage) considerations

• A linked list requires pointers to nodes.

• An array requires the maximum number of elements to 
be known in advance. If that maximum is not required, 
space is wasted at the end of the array.

Time considerations

• Operations on a linked list require more lines of explicit 

code than those in an array.  However, addressing an 

array element uses more implicit (compiler generated) code.

• Arrays are quicker at finding and altering ‘in the middle’

• Linked lists are quicker at insertions and removals ‘in the 
beginning/middle’

Lists vs. Arrays - A comparison



BLM267 37

• Not a built-in C/C++ type.

• String type can be (and is) implemented transparently.

• Need to grow and shrink in size - Efficiently 

represented as (variable-length) array of characters.

• Need to be maintained dynamically (by the system or 

by the user.)

• String Operations:
• Compute length

• Copy

• Compare strings

• Check substring existence

• Append, insert, delete substring

String (as an elementary data type)



BLM267 38

String representation

Allocate a fixed number of bytes for characters.

Use as many characters as needed, disregard the rest.

char str1[50];

A N K A R A U N I V E R S I T Y ? ? ? ? ?

Array elements can be addressed individually as chars.  

Beginning of the string is the first character:  str1[0]. 

Handle of the string is a pointer to the first character.

How to tell at which position the string ends?



BLM267 39

String representation

Two accepted ways to represent strings.

• ASCIIZ representation: End the string with a binary 0. 

????\0YTISREVINUARAKNA

?????????????\0Null (empty) string:

• Size-Content representation: Keep string size at the front.

17 ????YTISREVINUARAKNA

Null (empty) string: ?????????????00



BLM267 40

Null string representation

char * str; An empty (null) string is NOT represented by:

str = 0; 00000000

An empty (null) string is represented by:

*str = 0;

0x00

• If a string pointer is NULL, the string is invalid (cannot do 

string operations on it) 

• A ‘null pointer’ and a ‘null string’ are different entities.

• Empty or not, string 

pointers must always point 

to valid memory locations.



BLM267 41

String buffer

• When processing strings, strings are allowed to grow/shrink 

in size (create, copy, append). 

• Allocating one (maximum size) array for each string is very 

inefficient.

• Compilers use a contiguous memory block called string 

buffer (or string space) to keep literal strings which are 

constant  (format strings, initialization strings etc.)

• Some applications define a string buffer which is a memory 

area that contains all strings side by side, and can be 

manipulated under program control. 

A N K A R A \0 U N I V E R S I T Y \0 ? ? ? ?



BLM267 42

If a string grows in size, it may need to be moved to  a different 

location in string buffer.

String buffer

????\0YTISREVINU\0ARAKNA

char * p char * q

????\0\0YTISREVINUARAKNA

char * p

After strcat(p,q):

char * q



BLM267 43

String buffer

Empty locations in string buffer may need to be compacted from 

time to time. 





\0













\0

\0

\0



\0











\0











\0

\0

\0



\0





BLM267 44

Elementary data structures

Elementary data structures are the data types that are 

implemented in programming language syntax, or can be 

added with little effort.

Basically,  structures, arrays, linked lists and strings are 

sufficient to implement most of the useful data 

structures.

Many languages have elementary types as syntactic 

(language-defined) data types, or have extensive libraries 

that implement them.


