
BM267 1

BM267 - Introduction to Data 

Structures

Ankara University

Computer Engineering Department

5.  Recursion



BM267 2

Learn about

• Recursion

• Divide and conquer

• General and binary tree structures 

• Implementation of trees

• Mathematical properties of trees.

• Tree operations, tree traversal algorithms

Objectives
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Recursion

• A recursive definition is one which uses the word or concept 

being defined in the definition itself

• Consider the following list of numbers:

24, 88, 40

• Such a list can be defined on paper as

A LIST is a:  number

or a:  number  comma  LIST

• That is, a LIST is defined to be a single number, 

• Or a number followed by a comma followed by another LIST

• The concept of  LIST is used to define itself.
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• If you apply this definition to the actual list of numbers, the 

recursive part of the LIST definition is used several times, 

terminating with the non-recursive part:

LIST  number , LIST

24 , 30, 40 

number , LIST

24  , 30 , 40

number

24   , 30  ,   40 

Recursion
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• All recursive definitions have to have a terminating case

A LIST is:

either number, followed by a comma, followed by another LIST

or number

• Otherwise, there would be no way to terminate the recursive 

path

• Such a definition would cause infinite recursion

• This problem is similar to an infinite loop, but the non-

terminating "loop" is part of the definition itself

• The non-recursive part is often called the base case

Recursion
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• Recursion simply means a function that calls itself.

• The conditions that cause a function to call itself 

again are called the recursive case.

• In order to keep the recursion from going on forever, 

you must make sure you hit a termination condition 

called the base case.

• The number of nested invocations is called the depth 

of recursion.

• Function may call itself directly or indirectly.  (All of 

our examples are direct.)

Recursive functions
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Recursive functions

• Recursive functions must satisfy two basic 

properties:

– They must explicitly solve a base case.

– Each recursive call must  involve smaller values of the 

argument. 

Euclid: Greatest common divisor
int gcd(int m, int n) 

{ 

if (n == 0) 

return m; 

return gcd(n, m % n); 

}
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Recursive functions

int puzzle(int N)

{

if (N = = 1) 

return 1;

if (N % 2 == 0)

return puzzle(N/2);

else 

return puzzle(3*N+1);

} 

Here, we cannot use 

induction to prove 

that this program 

terminates, 

because not every 

recursive call uses 

an argument 

smaller than the 

one given.
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Recursive functions

Linked list node count:
int count(link x)  

{     

if (x == NULL) 

return 0;    

return 1 + count(x->next);   

}
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Recursive functions

Factorial function

 N!, for any positive integer N, is defined to be the product 

of all integers between 1 and N inclusive

 This definition can be expressed recursively as:

 0! = 1

 1!  =  1

 N!  =  N * (N-1)!

 The concept of the factorial is defined in terms of another 

factorial

 Eventually, the base case of 1! is reached.
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Recursive functions

• Recursion and looping has similar meanings.

• Loop termination condition has the same role as a recursive 

base case.

• A loop’s control variable serves the same role as a general case.

sum = 0;

i = 1;

while(i <= 10)

{

sum += i;

i++;

}

int Factorial(int n)

{

if (n == 0) (base case)

return 1;

else ( n>0, recursive case)

return n*Factorial(n-1);

}

Loop control and recursive case

both move toward termination condition

Termination 

Condition
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5!

5 * 4!

4 * 3!

3 * 2!

2 * 1!

1

2

6

24

120

Recursive functions

Function call Factorial(5) proceeds as below:
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• Consider the problem of computing the sum of all the numbers 

between 1 and any positive integer N

• This problem can be recursively defined as:

i = 1

N

i = 1

N-1

i = 1

N-2

=  N  + =  N + (N-1) +i

Recursive functions

i i
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main

sum

sum

sum

sum(3)

sum(1)

sum(2)

result = 1

result = 3

result = 6

Recursive functions

int countdown (int n){

if (n > 1)

return (n + countdown(n - 1));

else 

return 1;

}
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• Note that just because we can use recursion to solve a problem, 

doesn't mean we should

• For instance, we usually would not use recursion to solve the 

sum of 1 to N problem, because the iterative version is easier to 

understand

• However, for some problems, recursion provides an elegant 

solution, often cleaner than an iterative version

• You must carefully decide whether recursion is the correct 

technique for any problem

Recursive functions
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•Fibonacci numbers

–0, 1, 1, 2, 3, 5, 8...

–Each number sum of the previous two 

fib( n ) = fib( n - 1 ) + fib( n - 2 )

–Base case: fib(0) = 0 and fib(1) = 1

Recursive functions
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Recursive functions

int fib(int n){

if( n == 0)

return 0;

else if ( n == 1 )

return 1;

else

return ( fib(n-2) + fib(n-1) );

}
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int main(){

int i, array[32];

for( i = 0 ; i<32; i++) {

if( i == 0 )

array[i]= 0;

else if( i == 1)

array[i] = 1;

else

array[i] = array[i-2] + array[i-1];

}

cout<<array[31];

return 0;

}

Recursive functions
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Divide and conquer

• An effective approach to designing fast algorithm in sequential 

computation is the method known as divide and conquer.

• The problem to be solved  is broken into a number of 

subprograms (typically two) of the same form as the original 

problem; this is the divide step.

• The subproblems are then solved independently, usually 

recursively; this is the conquer step.

• Finally, the solutions to the subproblems are combined to 

provide the answer to the original problem.
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•The sorting algorithms Mergesort and Quicksort are both based 

on the divide-and-conquer approach.

•Example:Let us consider the task of finding the maximum( or 

minimum)  of N items stored in an array.

•Iterative Findmax: 

for( max =a[0], i =1 ; i < N; i++)

if(a[i] > max)

max = a[i];

T(n) = n-1

Divide and conquer
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Divide and conquer

Divide and Conquer solution of finding max of N integers.

int max(int a[], int l, int r){ 

int u, v; 

int m = (l+r)/2; 

if (l == r)

return a[l];

u = max(a, l, m);

v = max(a, m+1, r);

if (u > v) 

return u; 

else 

return v;

}
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Divide and conquer

• Assume that N = 2k

• T(n) = 2 T( n/ 2) +1

1 5 2 6 9 3 4 8

1 5 2 6 9 3 4 8

1 5 2 6 4 89 3

1 5 2 6 9 3 4 8
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1 5 2 6 9 3 4 8

Divide and conquer

5 6 9 8

6 9

9 max
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T(n) = 2 T( n/ 2) +1 T(n/2) = 2 T( n/ 4) +1

T(n) = 2 (2 T( n/ 4) +1) +1

= 22T(n/4) + 2 +1 T(n/4) = 2 T( n/ 8) +1

T(n) = 22(2 T( n/ 8) +1) + 2 + 1

= 23T(n/8) + 22 + 2 + 1

= 23T(n/23) + 22 + 2 + 1

…..

= 2kT(n/2k) + 2k-1+ 2k-2+… + 22 + 2 + 1

k-1

= 2kT(n/2k) +  Σ 2i

i=0

Divide and conquer
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Divide and conquer
From the base case where T(1) = 0

(n/2k) = 1  n = 2k       k = logn

k-1              x k -1        

and we know that   Σ 2i = --------------------

i= 0             x – 1

k-1 2 k -1 

T(n) = 2kT(n/2k) +  Σ 2i  =   2kT(n/2k) + --------------------

i=0                                                 2– 1

T(n) = 2k * 0 + 2 k -1  = 2 logn -1  = n-1


