
BM267 1

BM267 - Introduction to Data

Structures

Ankara University

Computer Engineering Department

5. Recursion

BM267 2

Learn about

• Recursion

• Divide and conquer

• General and binary tree structures

• Implementation of trees

• Mathematical properties of trees.

• Tree operations, tree traversal algorithms

Objectives

BM267 3

Recursion

• A recursive definition is one which uses the word or concept

being defined in the definition itself

• Consider the following list of numbers:

24, 88, 40

• Such a list can be defined on paper as

A LIST is a: number

or a: number comma LIST

• That is, a LIST is defined to be a single number,

• Or a number followed by a comma followed by another LIST

• The concept of LIST is used to define itself.

BM267 4

• If you apply this definition to the actual list of numbers, the

recursive part of the LIST definition is used several times,

terminating with the non-recursive part:

LIST  number , LIST

24 , 30, 40

number , LIST

24 , 30 , 40

number

24 , 30 , 40

Recursion

BM267 5

• All recursive definitions have to have a terminating case

A LIST is:

either number, followed by a comma, followed by another LIST

or number

• Otherwise, there would be no way to terminate the recursive

path

• Such a definition would cause infinite recursion

• This problem is similar to an infinite loop, but the non-

terminating "loop" is part of the definition itself

• The non-recursive part is often called the base case

Recursion

BM267 6

• Recursion simply means a function that calls itself.

• The conditions that cause a function to call itself

again are called the recursive case.

• In order to keep the recursion from going on forever,

you must make sure you hit a termination condition

called the base case.

• The number of nested invocations is called the depth

of recursion.

• Function may call itself directly or indirectly. (All of

our examples are direct.)

Recursive functions

BM267 7

Recursive functions

• Recursive functions must satisfy two basic

properties:

– They must explicitly solve a base case.

– Each recursive call must involve smaller values of the

argument.

Euclid: Greatest common divisor
int gcd(int m, int n)

{

if (n == 0)

return m;

return gcd(n, m % n);

}

BM267 8

Recursive functions

int puzzle(int N)

{

if (N = = 1)

return 1;

if (N % 2 == 0)

return puzzle(N/2);

else

return puzzle(3*N+1);

}

Here, we cannot use

induction to prove

that this program

terminates,

because not every

recursive call uses

an argument

smaller than the

one given.

BM267 9

Recursive functions

Linked list node count:
int count(link x)

{

if (x == NULL)

return 0;

return 1 + count(x->next);

}

BM267 10

Recursive functions

Factorial function

 N!, for any positive integer N, is defined to be the product

of all integers between 1 and N inclusive

 This definition can be expressed recursively as:

 0! = 1

 1! = 1

 N! = N * (N-1)!

 The concept of the factorial is defined in terms of another

factorial

 Eventually, the base case of 1! is reached.

BM267 11

Recursive functions

• Recursion and looping has similar meanings.

• Loop termination condition has the same role as a recursive

base case.

• A loop’s control variable serves the same role as a general case.

sum = 0;

i = 1;

while(i <= 10)

{

sum += i;

i++;

}

int Factorial(int n)

{

if (n == 0) (base case)

return 1;

else (n>0, recursive case)

return n*Factorial(n-1);

}

Loop control and recursive case

both move toward termination condition

Termination

Condition

BM267 12

5!

5 * 4!

4 * 3!

3 * 2!

2 * 1!

1

2

6

24

120

Recursive functions

Function call Factorial(5) proceeds as below:

BM267 13

• Consider the problem of computing the sum of all the numbers

between 1 and any positive integer N

• This problem can be recursively defined as:

i = 1

N

i = 1

N-1

i = 1

N-2

= N + = N + (N-1) +i

Recursive functions

i i

BM267 14

main

sum

sum

sum

sum(3)

sum(1)

sum(2)

result = 1

result = 3

result = 6

Recursive functions

int countdown (int n){

if (n > 1)

return (n + countdown(n - 1));

else

return 1;

}

BM267 15

• Note that just because we can use recursion to solve a problem,

doesn't mean we should

• For instance, we usually would not use recursion to solve the

sum of 1 to N problem, because the iterative version is easier to

understand

• However, for some problems, recursion provides an elegant

solution, often cleaner than an iterative version

• You must carefully decide whether recursion is the correct

technique for any problem

Recursive functions

Fall 2005 BM267 16

•Fibonacci numbers

–0, 1, 1, 2, 3, 5, 8...

–Each number sum of the previous two

fib(n) = fib(n - 1) + fib(n - 2)

–Base case: fib(0) = 0 and fib(1) = 1

Recursive functions

Fall 2005 BM267 17

Recursive functions

int fib(int n){

if(n == 0)

return 0;

else if (n == 1)

return 1;

else

return (fib(n-2) + fib(n-1));

}

Fall 2005 BM267 18

int main(){

int i, array[32];

for(i = 0 ; i<32; i++) {

if(i == 0)

array[i]= 0;

else if(i == 1)

array[i] = 1;

else

array[i] = array[i-2] + array[i-1];

}

cout<<array[31];

return 0;

}

Recursive functions

Fall 2005 BM267 19

Divide and conquer

• An effective approach to designing fast algorithm in sequential

computation is the method known as divide and conquer.

• The problem to be solved is broken into a number of

subprograms (typically two) of the same form as the original

problem; this is the divide step.

• The subproblems are then solved independently, usually

recursively; this is the conquer step.

• Finally, the solutions to the subproblems are combined to

provide the answer to the original problem.

Fall 2005 BM267 20

•The sorting algorithms Mergesort and Quicksort are both based

on the divide-and-conquer approach.

•Example:Let us consider the task of finding the maximum(or

minimum) of N items stored in an array.

•Iterative Findmax:

for(max =a[0], i =1 ; i < N; i++)

if(a[i] > max)

max = a[i];

T(n) = n-1

Divide and conquer

Fall 2005 BM267 21

Divide and conquer

Divide and Conquer solution of finding max of N integers.

int max(int a[], int l, int r){

int u, v;

int m = (l+r)/2;

if (l == r)

return a[l];

u = max(a, l, m);

v = max(a, m+1, r);

if (u > v)

return u;

else

return v;

}

Fall 2005 BM267 22

Divide and conquer

• Assume that N = 2k

• T(n) = 2 T(n/ 2) +1

1 5 2 6 9 3 4 8

1 5 2 6 9 3 4 8

1 5 2 6 4 89 3

1 5 2 6 9 3 4 8

Fall 2005 BM267 23

1 5 2 6 9 3 4 8

Divide and conquer

5 6 9 8

6 9

9 max

Fall 2005 BM267 24

T(n) = 2 T(n/ 2) +1 T(n/2) = 2 T(n/ 4) +1

T(n) = 2 (2 T(n/ 4) +1) +1

= 22T(n/4) + 2 +1 T(n/4) = 2 T(n/ 8) +1

T(n) = 22(2 T(n/ 8) +1) + 2 + 1

= 23T(n/8) + 22 + 2 + 1

= 23T(n/23) + 22 + 2 + 1

…..

= 2kT(n/2k) + 2k-1+ 2k-2+… + 22 + 2 + 1

k-1

= 2kT(n/2k) + Σ 2i

i=0

Divide and conquer

Fall 2005 BM267 25

Divide and conquer
From the base case where T(1) = 0

(n/2k) = 1  n = 2k k = logn

k-1 x k -1

and we know that Σ 2i = --------------------

i= 0 x – 1

k-1 2 k -1

T(n) = 2kT(n/2k) + Σ 2i = 2kT(n/2k) + --------------------

i=0 2– 1

T(n) = 2k * 0 + 2 k -1 = 2 logn -1 = n-1

