BM267 - Introduction to Data Structures

5. Recursion

Ankara University
Computer Engineering Department

Objectives

Learn about

- Recursion
- Divide and conquer
- General and binary tree structures
- Implementation of trees
- Mathematical properties of trees.
- Tree operations, tree traversal algorithms

Recursion

- A recursive definition is one which uses the word or concept being defined in the definition itself
- Consider the following list of numbers:

$$
24,88,40
$$

- Such a list can be defined on paper as

```
A LIST is a: number
    or a: number comma LIST
```

- That is, a LIST is defined to be a single number,
- Or a number followed by a comma followed by another LIST
- The concept of LIST is used to define itself.

Recursion

- If you apply this definition to the actual list of numbers, the recursive part of the LIST definition is used several times, terminating with the non-recursive part:

LIST \rightarrow number , LIST

Recursion

- All recursive definitions have to have a terminating case A LIST is: either number, followed by a comma, followed by another LIST or number
- Otherwise, there would be no way to terminate the recursive path
- Such a definition would cause infinite recursion
- This problem is similar to an infinite loop, but the nonterminating "loop" is part of the definition itself
- The non-recursive part is often called the base case

Recursive functions

- Recursion simply means a function that calls itself.
- The conditions that cause a function to call itself again are called the recursive case.
- In order to keep the recursion from going on forever, you must make sure you hit a termination condition called the base case.
- The number of nested invocations is called the depth of recursion.
- Function may call itself directly or indirectly. (All of our examples are direct.)

Recursive functions

- Recursive functions must satisfy two basic properties:
- They must explicitly solve a base case.
- Each recursive call must involve smaller values of the argument.

Euclid: Greatest common divisor int gcd (int m, int n)
\{
if ($\mathrm{n}=\mathrm{=}=0$) return m;
return $\operatorname{gcd}(n, m \% n)$;
\}

Recursive functions

int puzzle(int N)
\{

$$
\begin{aligned}
& \text { if }(N==1) \\
& \text { return } 1 \text {; } \\
& \text { if }(N \% 2==0) \\
& \text { return puzzle }(N / 2) \text {; } \\
& \text { else }
\end{aligned}
$$

return puzzle ($3 * N+1$);

Here, we cannot use induction to prove that this program terminates, because not every recursive call uses an argument smaller than the one given.

Recursive functions

Linked list node count:
int count(link x)
\{
if (x == NULL)
return 0;
return $1+$ count(x->next);
\}

Recursive functions

Factorial function

- N !, for any positive integer N , is defined to be the product of all integers between 1 and N inclusive
- This definition can be expressed recursively as:
- $0!=1$
- $1!=1$
- $\quad \mathrm{N}!=\mathrm{N}^{*}(\mathrm{~N}-1)$!
- The concept of the factorial is defined in terms of another factorial
- Eventually, the base case of 1 ! is reached.

Recursive functions

- Recursion and looping has similar meanings.
- Loop termination condition has the same role as a recursive base case.
- A loop's control variable serves the same role as a general case.

```
sum = 0;
i = 1;
while(i <= 10)
{
    sum += i;
    i++;
}
```

Loop control and recursive case both move toward termination condition

Recursive functions

Function call Factorial(5) proceeds as below:

Recursive functions

- Consider the problem of computing the sum of all the numbers between 1 and any positive integer N
- This problem can be recursively defined as:

$$
\sum_{i=1}^{N} i=N+\sum_{i=1}^{N-1} i=N+(N-1)+\sum_{i=1}^{N-2} i
$$

Recursive functions

```
int countdown (int n){
    if (n > 1)
    return (n + countdown(n - 1));
    else
    return 1;
}
```


Recursive functions

- Note that just because we can use recursion to solve a problem, doesn't mean we should
- For instance, we usually would not use recursion to solve the sum of 1 to N problem, because the iterative version is easier to understand
- However, for some problems, recursion provides an elegant solution, often cleaner than an iterative version
- You must carefully decide whether recursion is the correct technique for any problem

Recursive functions

-Fibonacci numbers

$$
-0,1,1,2,3,5,8 \ldots
$$

-Each number sum of the previous two
$\mathbf{f i b}(\mathbf{n})=\mathbf{f i b}(\mathbf{n - 1})+\mathbf{f i b}(\mathbf{n - 2})$

- Base case: $\mathbf{f i b}(\mathbf{0})=\mathbf{0}$ and $\mathbf{f i b}(\mathbf{1})=\mathbf{1}$

Recursive functions

```
int fib(int n){
    if( n == 0)
        return 0;
    else if ( n == 1 )
    return 1;
    else
        return ( fib(n-2) + fib(n-1) );
```


Recursive functions

```
int main(){
int i, array[32];
for( i = 0 ; i<32; i++)
    if( i == 0 )
        array[i]= 0;
    else if( i == 1)
        array[i] = 1;
    else
        array[i] = array[i-2] + array[i-1];
    }
    cout<<array[31];
    return 0;
```


Divide and conquer

- An effective approach to designing fast algorithm in sequential computation is the method known as divide and conquer.
- The problem to be solved is broken into a number of subprograms (typically two) of the same form as the original problem; this is the divide step.
- The subproblems are then solved independently, usually recursively; this is the conquer step.
- Finally, the solutions to the subproblems are combined to provide the answer to the original problem.

Divide and conquer

-The sorting algorithms Mergesort and Quicksort are both based on the divide-and-conquer approach.
-Example:Let us consider the task of finding the maximum(or minimum) of N items stored in an array.
-Iterative Findmax:

$$
\begin{gathered}
\text { for }(\max =a[0], i=1 ; i<N ; i++) \\
\text { if }(a[i]>\max) \\
\max =a[i] ;
\end{gathered}
$$

$$
\mathbf{T}(\mathbf{n})=\mathbf{n}-1
$$

Divide and conquer

Divide and Conquer solution of finding max of N integers. int max(int a[], int l, int r) \{
int u, v;
int $m=(1+r) / 2$;
if (l == r)
return a[l];
$u=\max (a, l, m) ;$
$\mathrm{v}=\max (\mathrm{a}, \mathrm{m}+1, \mathrm{r})$;
if (u > v)
return u;
else return v;
\}

Divide and conquer

- Assume that $\mathrm{N}=2^{\mathrm{k}}$
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+1$

1	5	2	6	9	3	4	8

9	3	4	8

Divide and conguer

Divide and conquer

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =2 \mathrm{~T}(\mathrm{n} / 2)+1 \quad \mathrm{~T}(\mathrm{n} / 2)=2 \mathrm{~T}(\mathrm{n} / 4)+1 \\
\mathrm{~T}(\mathrm{n}) & =2(2 \mathrm{~T}(\mathrm{n} / 4)+1)+1 \\
& =2^{2} \mathrm{~T}(\mathrm{n} / 4)+2+1 \quad \mathrm{~T}(\mathrm{n} / 4)=2 \mathrm{~T}(\mathrm{n} / 8)+1 \\
\mathrm{~T}(\mathrm{n}) & =2^{2}(2 \mathrm{~T}(\mathrm{n} / 8)+1)+2+1 \\
& =2^{3} \mathrm{~T}(\mathrm{n} / 8)+2^{2}+2+1 \\
& =2^{3} \mathrm{~T}\left(\mathrm{n} / 2^{3}\right)+2^{2}+2+1 \\
& \cdots \\
& =2^{\mathrm{k}} \mathrm{~T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+2^{\mathrm{k}-1}+2^{\mathrm{k}-2}+\ldots+2^{2}+2+1 \\
& =2^{\mathrm{k}} \mathrm{~T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+\sum_{\mathrm{i}=0} 2^{\mathrm{i}}
\end{aligned}
$$

Divide and conquer

From the base case where $T(1)=0$

$$
\left(\mathrm{n} / 2^{\mathrm{k}}\right)=1 \rightarrow \mathrm{n}=2^{\mathrm{k}} \quad \mathrm{k}=\log \mathrm{n}
$$

$$
\mathrm{k}-1 \quad \mathrm{x}^{\mathrm{k}}-1
$$

and we know that $\begin{aligned} & \sum 2^{i}=-\cdots-----------1 \\ & i=0 \quad x-1\end{aligned}$

$$
\begin{array}{ll}
\mathrm{k}-1 & 2^{\mathrm{k}}-1
\end{array}
$$

$$
\mathrm{T}(\mathrm{n})=2^{\mathrm{k}} \mathrm{~T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+\sum_{\mathrm{i}=0}^{\sum} 2^{\mathrm{i}}=2^{\mathrm{k}} \mathrm{~T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+\cdots-----------1
$$

$$
\mathrm{T}(\mathrm{n})=2^{\mathrm{k}} * 0+2^{\mathrm{k}}-1=2^{\log \mathrm{n}}-1=\mathbf{n} \mathbf{- 1}
$$

