
BM267 1

BM267 - Introduction to Data

Structures

Ankara University

Computer Engineering Department
Bulent Tugrul

5. Trees

BM267 2

Learn about the definitions, characteristics and

implementation details for:

• General trees

• Rooted trees

• Binary and N-ary trees

• Tree operations, tree traversal algorithms

Objectives

BM267 3

Tree Structures

One of the most frequently used ordering methods of data.

Many logical organizations of everyday data exhibit tree

structures

Promotional tournaments

Organizational charts

Hierarchical organization of entities

Parsing natural and computer languages

Game trees

Decision trees

...

BM267 4

Trees

A real tree

Computer Scientist's tree

BM267 5

Trees

A general tree is a nonempty collection of vertices

(nodes) and connections between nodes (edges) that

satisfy certain rules. These rules impose a hierarchical

structure on the nodes with a parent-child relation.

There is only one connecting path between any two

nodes.

BM267 6

14

17 11

9

13

53 4

19 7

Trees

Root

BM267 7

-

+ *

9 53 4 7

Trees

= (9 + 53) – (4 * 7)

BM267 8

Rooted Trees

• There is a unique node called root node. Node “14” is the root

of the tree.

• The parent of a node is the node linked above it. Every non-

root node has a unique parent. Node 17 is the parent of 9 and

53.

• The nodes whose parent is node n are n’s children. The

children of Node 17 are 9 and 53.

• Nodes without children are leaves. Nodes 13, 53, 19, and 7 are

leaves.

• Two nodes are siblings if the have the same parent. 9 and 53 are

siblings of each other.

BM267 9

Root

Root’s

children

Leaves

Rooted Trees

BM267 10

• An empty tree has no nodes

• The descendants of a node are its children and the
descendents of its children

• The ancestors of a node are its parent (if any) and the
ancestors of its parent

• An ordered tree is one in which the order of the
children is important; an unordered tree is one in
which the ordering of the children is not important.

• The branching factor of a node is the number of
children it has.

Rooted Trees

BM267 11

0

1

3

2

1 1 1

3

2 2 2 2 2 2

The depth or level of a node n is the number

of edges on a path from the root to n.

The depth of the root is 0.

Root is at level 0.

Rooted Trees

BM267 12

Rooted Trees

0 0

0 0 0000 1

11 12

3

The height of a node n is the number of

edges on the longest path from n to a

descendent leaf.

The height of each leaf is 0.

BM267 13

Binary Trees

A binary tree is a special rooted tree in which

every node has at most 2 children.

Children are ordered: every child is explicitly

designated as left or right child.

BM267 14

Binary Trees

• The i-th level of a binary tree contains all nodes at

depth i.

• The height of a binary tree is the height of its root.

• The i-th level of a binary tree contains at most 2i

nodes.

• A binary tree of height h contains at most 2h+1–1

nodes.

• A binary tree of height h has at most 2h leaves.

BM267 15

Binary Trees

Level 3

Level 1

Level 2

Level 0

23

21

22

20

Total nodes = 2h + 2h-1 +…+ 22 +21 +20

2h+1 - 1

= ------------

2 -1

BM267 16

A binary tree is complete(perfect) if:

• Every node has either zero or two children. (Every

internal node has two children.)

• Every leaf is at the same level.

Binary Trees

BM267 17

Binary Trees

A binary tree is almost complete (perfect) if

• All levels of the tree are complete, except possibly

the last one.

• The nodes on the last level are as far left as possible.

BM267 18

Binary Trees

• A almost complete binary tree of height h

contains between 2h and 2h + 1 – 1 nodes.

• A almost complete binary tree of size n has

height h = floor(log n).

2h <= n <= 2h + 1 – 1

h <= log n < h+1

BM267 19

Binary Trees

l g o r i t h m sa

i

m

o t

l

h

a

s

g

r

0

1 2

3 4 5 6

987

parent(i)= (i –1) / 2

left(i) = 2i + 1

right(i) = 2i + 2

(integer

division)

0 1 2 3 4 5 6 7 8 9

BM267 20

Binary Trees

We can also represent incomplete binary trees in an array

A

B

C

0

21

65
43

A B C

0 1 2 3 4 5 6

BM267 21

Binary Trees

Linked representations of binary trees.

A

root

B G

E K M

struct TreeNode{

char data;

struct TreeNode *left;

struct TreeNode *right;

}

BM267 22

Binary Trees

Common Binary Tree Operations

– Determine its height

– Determine the number of elements in it

– Display the binary tree on the screen.

Returns the height of the tree.

int height(link h)

{ int u, v;

if (h == NULL)

return -1;

u = height(h->l);

v = height(h->r);

if (u > v) return u+1;

else return v+1; }

BM267 23

Returns the number of elements in the tree.

int count(link h){

if (h == NULL)

return 0;

return count(h->l) + count(h->r) + 1;

}

Binary Trees

BM267 24

• To traverse (or walk) the binary tree is to visit each

node in the binary tree exactly once

• Tree traversals are naturally recursive.

• Since a binary tree has two dimensions, there are

two possible ways to traverse the binary tree

• Depth-first - visit nodes on the same path first

(start from top, go as far down as possible)

• Breadth-first - visit nodes at the same level first

(start from left, go as far right as possible)

Tree Traversals

BM267 25

• Since a binary tree has three “parts,” there are three

possible ways to traverse the binary tree (from left to

right) :

• Pre-order: the node is visited first, then the

children (left to right)

• In-order: the left child is visited, then the

node, then the right child

• Post-order: the node is visited after the

children

Depth-first Traversals (binary trees)

BM267 26

a

c

d e

j

i

h

g

f

b

Pre-order Traversal

h j d i c b g f a e

: Node is visited here

BM267 27

a

c

d e

j

i

h

g

f

b

In-order Traversal

i d c j g b h a f e

BM267 28

a

c

d e

j

i

h

g

f

b

Post-order Traversal

i c d g b j a e f h

BM267 29

a

c

d e

j

i

h

g

f

b

Breadth-first Traversal

h j f d b a e i c g

BM267 30

Prints the nodes’ data in Preorder

void traverse(LINK h)

{

if (h)

{

printf(“%d”, h->data); //(prints the node)

traverse(h->left);

traverse(h->right);

}

}

Tree Traversal - Preorder

BM267 31

Tree Traversal - Inorder
Prints the nodes’ data in Inorder

void traverse(LINK h)

{

if (h)

{

traverse(h->left);

printf(“%d”, h->data); //(prints the node)

traverse(h->right);

}

}

BM267 32

Tree Traversal - Postorder
Prints the nodes’ data in Postorder

void traverse(LINK h)

{

if (h)

{

traverse(h->left);

traverse(h->right);

printf(“%d”, h->data); //(prints the node)

}

}

BM267 33

Implementing (general) rooted trees

BM267 34

Example: Variable-length codes

ASCII uses 8-bits for coding letters (fixed-length code).

To minimize the space requirements, we can use an

alternate coding scheme (variable-length code):

• Let the most frequently used letters be represented

with shorter bit sequences (depends on the

language being coded).

• Let the least frequently used letters be represented

with longer bit sequences.

BM267 35

Requirements: For each possible coded sequence, the

sequence must be

• uniquely decodeable.

• instantaneously decodeable (without the need for

further computations or table look-ups).

This philosophy had been employed in Morse code.

Also known as Huffman coding.

Example: Variable-length codes

BM267 36

Example: Variable-length codes

Let our alphabet consist of 5 symbols, A, B, C, D, E.

Consider the code for

ABCDE.

Symbol Freq.(%)

A 40

B 25

C 15

D 15

E 5

BM267 37

Example: Variable-length codes

Assume the following

codes were chosen:

Symbol Code

A 1

B 00

C 01

D 11

E 011

Consider the coding for ABCDE.

The code will be: 1000111011

Can you decode it?

This code is not

uniquely decodeable.

1 . 00 . 01 . 11 ? 011

Is 011 = 011 (E) or 01.1 (CA) ?

BM267 38

Example: Variable-length codes

Assume the following

codes were chosen:

Symbol Code

A 0

B 01

C 011

D 0111

E 111

Consider the coding for ABCDE.

The code will be: 0010110111111

Can you decode it?

This code is not instantaneously

decodeable. You have check the

next digit.

0.01 ? 0110111111

Is 011 = 01 (B) . 1 or 011 (C) ?

BM267 39

Example: Variable-length codes

1

1

1

0

1

1

E
C

B

A

1
D

This code is not instantaneously

decodeable. You have check the

next digit (compare the next digit

with the next edge on the tree).

However, it is uniquely

decodeable.

Draw the code tree. Start from the root and follow

the edges until a code word is found.

Repeat until decoding is completed.

BM267 40

5

E

25

B

15

D

40

A

15

C

Huffman Coding

20

5

E

15

D

15

C

25

B

40

A

Initial State

BM267 41

20

5

E

15

D

15

C

25

B

40

A

Huffman Coding

35

BM267 42

20

5

E

15

D

15

C

25

B

40

A

35

Huffman Coding

60

BM267 43

20

5

E

15

D

15

C

25

B

40

A

35

Huffman Coding

60

1000

0

0

0

1

1

1

1

BM267 44

Symbol Code

A 0

B 10

C 110

D 1111

E 1110

Consider the coding for ABCDE.

The code will be: 01011011111110

Can you decode it?

0 . 10 . 110. 1111 . 1110

Huffman Coding

Analysis: With the given frequencies, the expected number of bits

per character is: = 1X0.40 + 2X0.25+ 3X0.15 + 4X0.15 + 4 X 0.05

= 2.25

