BM267 - Introduction to Data Structures

5. Trees

Ankara University
Computer Engineering Department Bulent Tugrul

Objectives

Learn about the definitions, characteristics and implementation details for:

- General trees
- Rooted trees
- Binary and N -ary trees
- Tree operations, tree traversal algorithms

Tree Structures

One of the most frequently used ordering methods of data.
Many logical organizations of everyday data exhibit tree structures

Promotional tournaments
Organizational charts
Hierarchical organization of entities
Parsing natural and computer languages
Game trees
Decision trees

A real tree

Computer Scientist's tree

Trees

A general tree is a nonempty collection of vertices (nodes) and connections between nodes (edges) that satisfy certain rules. These rules impose a hierarchical structure on the nodes with a parent-child relation.

There is only one connecting path between any two nodes.

Trees

Rooted Trees

- There is a unique node called root node. Node " 14 " is the root of the tree.
- The parent of a node is the node linked above it. Every nonroot node has a unique parent. Node 17 is the parent of 9 and 53.
- The nodes whose parent is node n are n's children. The children of Node 17 are 9 and 53.
- Nodes without children are leaves. Nodes $13,53,19$, and 7 are leaves.
- Two nodes are siblings if the have the same parent. 9 and 53 are siblings of each other.

Rooted Trees

- An empty tree has no nodes
- The descendants of a node are its children and the descendents of its children
- The ancestors of a node are its parent (if any) and the ancestors of its parent
- An ordered tree is one in which the order of the children is important; an unordered tree is one in which the ordering of the children is not important.
- The branching factor of a node is the number of children it has.

Rooted Trees

The depth or level of a node n is the number of edges on a path from the root to n.

Rooted Trees

The height of a node n is the number of edges on the longest path from n to a descendent leaf.

A binary tree is a special rooted tree in which every node has at most 2 children.

Children are ordered: every child is explicitly designated as left or right child.

Binary Trees

- The i-th level of a binary tree contains all nodes at depth \mathbf{i}.
- The height of a binary tree is the height of its root.
- The i-th level of a binary tree contains at most $\mathbf{2}^{\mathbf{i}}$ nodes.
- A binary tree of height h contains at most $\mathbf{2}^{\mathbf{h + 1}} \mathbf{- 1}$ nodes.
- A binary tree of height h has at most $\mathbf{2}^{\mathrm{h}}$ leaves.

Binary Trees

Level 0
Level 1
Level 2
Level 3

$$
\begin{aligned}
\text { Total nodes }= & 2^{\mathrm{h}}+2^{\mathrm{h}-1}+\ldots+2^{2}+2^{1}+2^{0} \\
& 2^{\mathrm{h}+1}-1 \\
= & -\cdots-\cdots------ \\
& 2-1
\end{aligned}
$$

Binary Trees

A binary tree is complete(perfect) if:

- Every node has either zero or two children. (Every internal node has two children.)
- Every leaf is at the same level.

Binary Trees

A binary tree is almost complete (perfect) if

- All levels of the tree are complete, except possibly the last one.
- The nodes on the last level are as far left as possible.

Binary Trees

- A almost complete binary tree of height h contains between $\mathbf{2}^{\mathrm{h}}$ and $\mathbf{2}^{\mathrm{h}+\mathbf{1}}-\mathbf{1}$ nodes.
- A almost complete binary tree of size \mathbf{n} has height $h=$ floor $(\log n)$.

$$
\begin{gathered}
2^{\mathrm{h}}<=\mathrm{n}<=\mathbf{2}^{\mathrm{h}+\mathbf{1}}-\mathbf{1} \\
\mathrm{h}<=\log \mathrm{n}<\mathrm{h}+1
\end{gathered}
$$

Binary Trees

$$
\begin{aligned}
& \underset{\operatorname{parent}(\mathbf{i})}{\operatorname{pant}(\mathbf{i})}=(\mathbf{i}-\mathbf{1}) / \mathbf{2}^{(} \underset{\text { division })}{(\text { integer }} \\
& \operatorname{left}(\mathbf{i})=\mathbf{2 i}+\mathbf{1} \\
& \operatorname{right}(\mathbf{i})=\mathbf{2 i}+\mathbf{2} \\
& 7 \text { (h) } 8 \mathrm{~m} \text { (s) }
\end{aligned}
$$

Binary Trees

We can also represent incomplete binary trees in an array

Binary Trees

Linked representations of binary trees.
struct TreeNode\{ char data;
struct TreeNode *left; struct TreeNode *right;

Binary Trees

Common Binary Tree Operations

- Determine its height
- Determine the number of elements in it
- Display the binary tree on the screen.

Returns the height of the tree.
int height(link h)
\{ int u, v;
if (h == NULL)
return -1;
u = height (h->l);
v = height(h->r);
if (u > v) return u+1;
else return $\mathrm{v}+1$; \}

Binary Trees

Returns the number of elements in the tree.
int count (link h) \{

$$
\begin{aligned}
& \text { if } \quad \begin{array}{l}
\mathrm{h} \\
\text { return } 0 \text {; }
\end{array} \\
& \text { NULL) }
\end{aligned}
$$

$$
\text { return count }(\mathrm{h}->1)+\text { count }(\mathrm{h}->r)+1 ;
$$

\}

Tree Traversals

- To traverse (or walk) the binary tree is to visit each node in the binary tree exactly once
- Tree traversals are naturally recursive.
- Since a binary tree has two dimensions, there are two possible ways to traverse the binary tree
- Depth-first - visit nodes on the same path first (start from top, go as far down as possible)
- Breadth-first - visit nodes at the same level first (start from left, go as far right as possible)

Depth-first Traversals (binary trees)

- Since a binary tree has three "parts," there are three possible ways to traverse the binary tree (from left to right) :
- Pre-order: the node is visited first, then the children (left to right)
- In-order: the left child is visited, then the node, then the right child
- Post-order: the node is visited after the children

Pre-order Traversal

hjdicbgfae
: Node is visited here

In-order Traversal

Post-order Traversal

Breadth-first Traversal

Tree Traversal - Preorder

```
Prints the nodes' data in Preorder
void traverse( LINK h )
\{
    if (h)
    \{
        printf("\%d", h->data); //(prints the node)
traverse(h->left);
traverse(h->right);
    \}
\}
```


Tree Traversal - Inorder

Prints the nodes' data in Inorder
void traverse(LINK h)
\{
if (h)
\{
traverse(h->left);
printf("\%d", h->data); //(prints the node) traverse(h->right);
\}
\}

Tree Traversal - Postorder

Prints the nodes' data in Postorder

```
void traverse( LINK h )
f
    if (h)
    \{
traverse(h->left);
traverse(h->right);
printf("\%d", h->data); //(prints the node)
    \}
\}
```


Implementing (general) rooted trees

Example: Variable-length codes

ASCII uses 8-bits for coding letters (fixed-length code).
To minimize the space requirements, we can use an alternate coding scheme (variable-length code):

- Let the most frequently used letters be represented with shorter bit sequences (depends on the language being coded).
- Let the least frequently used letters be represented with longer bit sequences.

Example: Variable-length codes

Requirements: For each possible coded sequence, the sequence must be

- uniquely decodeable.
- instantaneously decodeable (without the need for further computations or table look-ups).

This philosophy had been employed in Morse code.
Also known as Huffman coding.

Example: Variable-length codes

Let our alphabet consist of 5 symbols, A, B, C, D, E.

Symbol	Freq.(\%)
A	40
B	25
C	15
D	15
E	5

Consider the code for ABCDE.

Example: Variable-length codes

Assume the following codes were chosen:

Symbol	Code
A	1
B	00
C	01
D	11
E	011

Consider the coding for $\mathbf{A B C D E}$.
The code will be: 1000111011
Can you decode it?
1.00.01.11 ? 011

Is $011=011(\mathrm{E})$ or $01.1(\mathrm{CA})$?
This code is not uniquely decodeable.

Example: Variable-length codes

Assume the following codes were chosen:

Symbol	Code
A	0
B	01
C	011
D	0111
E	111

Consider the coding for ABCDE.
The code will be: 0010110111111
Can you decode it?

0.01 ? 0110111111
Is $011=01(\mathrm{~B}) . \mathbf{1}$ or $011(\mathrm{C})$?

This code is not instantaneously decodeable. You have check the next digit.

Example: Variable-length codes

Draw the code tree. Start from the root and follow the edges until a code word is found.

Repeat until decoding is completed.

This code is not instantaneously decodeable. You have check the next digit (compare the next digit with the next edge on the tree).

However, it is uniquely decodeable.

Huffiman Coding

Huffiman Coding

Huffiman Coding

Huffiman Coding

Symbol	Code
A	0
B	10
C	110
D	1111
E	1110

Consider the coding for ABCDE . The code will be: $\mathbf{0 1 0 1 1 0 1 1 1 1 1 1 1 0}$ Can you decode it?

0.10.110.1111. 1110

Analysis: With the given frequencies, the expected number of bits per character is: $=1 \mathrm{X} 0.40+2 \mathrm{X} 0.25+3 \mathrm{X} 0.15+4 \mathrm{X} 0.15+4 \mathrm{X} 0.05$

$$
=2.25
$$

