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Learn about the definitions, characteristics and 

implementation details for:

• General trees

• Rooted trees

• Binary and N-ary trees

• Tree operations, tree traversal algorithms

Objectives
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Tree Structures

One of the most frequently used ordering methods of data.

Many logical organizations of everyday data exhibit tree 

structures 

Promotional tournaments  

Organizational charts

Hierarchical organization of entities

Parsing natural and computer languages

Game trees

Decision trees

...
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Trees

A real tree

Computer Scientist's tree
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Trees

A general tree is a nonempty collection of vertices 

(nodes) and connections between nodes (edges) that 

satisfy certain rules.   These rules impose a hierarchical

structure on the nodes with a parent-child relation.

There is only one connecting path between any two 

nodes.
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Rooted Trees

• There is a unique node called root node. Node “14” is the root 

of the tree. 

• The parent of a node is the node linked above it. Every non-

root node has a unique parent. Node 17 is the parent of 9 and 

53.

• The nodes whose parent is node n are n’s children. The 

children of Node 17 are 9 and 53.

• Nodes without children are leaves. Nodes 13, 53, 19, and 7 are 

leaves.

• Two nodes are siblings if the have the same parent. 9 and 53 are 

siblings of each other.
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Root

Root’s

children

Leaves

Rooted Trees
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• An empty tree has no nodes

• The descendants of a node are its children and the 
descendents of its children

• The ancestors of a node are its parent (if any) and the 
ancestors of its parent

• An ordered tree is one in which the order of the 
children is important; an unordered tree is one in 
which the ordering of the children is not important.

• The branching factor of a node is the number of 
children it has.

Rooted Trees
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The depth or level of a node n is the number 

of edges on a path from the root to n.

The depth of the root is 0.

Root is at level 0.

Rooted Trees
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Rooted Trees
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The height of a node n is the number of 

edges on the longest path from n to a 

descendent leaf.

The height of each leaf is  0.
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Binary Trees

A binary tree is a special rooted tree in which 

every node has at most 2 children.

Children are ordered:  every child is explicitly 

designated as left or right child.
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Binary Trees

• The i-th level of a binary tree contains all nodes at 

depth i.

• The height of a binary tree is the height of its root.

• The i-th level of a binary tree contains at most 2i

nodes.

• A binary tree of height h contains at most 2h+1–1

nodes.

• A binary tree of height h has at most 2h leaves.
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Binary Trees

Level 3
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Level 2

Level 0
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Total nodes = 2h + 2h-1 +…+ 22 +21 +20

2h+1 - 1

= ------------
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A binary tree is complete( perfect ) if:

• Every node has either zero or two children. (Every 

internal node has two children.)

• Every leaf is at the same level.

Binary Trees
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Binary Trees

A binary tree is almost complete (perfect) if

• All levels of the tree are complete, except possibly 

the last one.

• The nodes on the last level are as far left as possible.
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Binary Trees

• A almost complete binary tree of height h 

contains between 2h and 2h + 1 – 1 nodes.

• A almost complete binary tree of size n has 

height h = floor( log n ).

2h  <=  n <=  2h + 1 – 1

h <= log n < h+1
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Binary Trees
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parent(i)= (i –1) / 2

left(i) = 2i + 1

right(i) = 2i + 2

(integer 

division )
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Binary Trees

We can also represent incomplete binary trees in an array 

A

B

C
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43

A B C

0      1      2      3      4      5      6
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Binary Trees

Linked representations of binary trees.

A

root

B G

E K M

struct TreeNode{

char data;

struct TreeNode *left;

struct TreeNode *right;

}
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Binary Trees

Common Binary Tree Operations

– Determine its height

– Determine the number of elements in it

– Display  the binary tree on the screen. 

Returns the height of the tree.

int height(link h)

{ int u, v;

if (h == NULL) 

return -1;

u = height(h->l); 

v = height(h->r);

if (u > v) return u+1; 

else return v+1;  }



BM267 23

Returns the number of elements in the tree.

int count(link h){ 

if (h == NULL) 

return 0;

return count(h->l) + count(h->r) + 1;

}

Binary Trees
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• To traverse (or walk) the binary tree is to visit each 

node in the binary tree exactly once

• Tree traversals are naturally recursive.

• Since a binary tree has two dimensions, there are 

two possible ways to traverse the binary tree

• Depth-first  - visit nodes on the same path first 

(start from top,  go as far down as possible)

• Breadth-first - visit nodes at the same level first 

(start from left,  go as far right as possible)

Tree Traversals
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• Since a binary tree has three “parts,” there are three 

possible ways to traverse the binary tree (from left to 

right) :

• Pre-order:  the node is visited first, then the 

children (left to right)

• In-order:  the left child is visited, then the

node, then the right child

• Post-order: the node is visited after the 

children

Depth-first Traversals (binary trees)
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Prints the nodes’ data in Preorder

void traverse( LINK h )

{

if (h)

{

printf(“%d”, h->data);  //(prints the node)

traverse(h->left); 

traverse(h->right); 

}

}

Tree Traversal - Preorder
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Tree Traversal - Inorder
Prints the nodes’ data in Inorder

void traverse( LINK h )

{

if (h)

{

traverse(h->left); 

printf(“%d”, h->data);  //(prints the node)

traverse(h->right); 

}

}
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Tree Traversal - Postorder
Prints the nodes’ data in Postorder

void traverse( LINK h )

{

if (h)

{

traverse(h->left); 

traverse(h->right);

printf(“%d”, h->data);  //(prints the node)

}

}
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Implementing (general) rooted trees



BM267 34

Example:  Variable-length codes 

ASCII uses 8-bits for coding letters (fixed-length code).

To minimize the space requirements, we can use an 

alternate coding scheme (variable-length code):

• Let the most frequently used letters be represented 

with shorter bit sequences (depends on the 

language being coded). 

• Let the least frequently used letters be represented 

with longer bit sequences.
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Requirements:   For each possible coded sequence, the 

sequence must be

• uniquely decodeable.

• instantaneously decodeable (without the need for 

further computations or table look-ups).

This philosophy had been employed in Morse code.

Also known as Huffman coding.

Example: Variable-length codes 
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Example: Variable-length codes 

Let our alphabet consist of 5 symbols,  A, B, C, D, E.

Consider the code for

ABCDE.

Symbol Freq.(%)

A 40

B 25

C 15

D 15

E 5
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Example: Variable-length codes 

Assume the following 

codes were chosen:

Symbol Code

A 1

B 00

C 01

D 11

E 011

Consider the coding for ABCDE.

The code will be: 1000111011

Can you decode it? 

This code is not

uniquely decodeable.

1 . 00 . 01 . 11 ? 011

Is 011 =  011 (E)  or   01.1 (CA)  ?
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Example: Variable-length codes 

Assume the following 

codes were chosen:

Symbol Code

A 0

B 01

C 011

D 0111

E 111

Consider the coding for ABCDE.

The code will be: 0010110111111

Can you decode it? 

This code is not instantaneously 

decodeable. You have check the 

next digit. 

0.01 ? 0110111111

Is 011 =  01 (B) . 1 or   011 (C)  ?
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Example: Variable-length codes 

1

1

1

0
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C
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1
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This code is not instantaneously 

decodeable. You have check the 

next digit (compare the next digit 

with the next edge on the tree).

However, it is uniquely 

decodeable.

Draw the code tree.   Start from the root and follow 

the edges until a code word is found.

Repeat until decoding is completed.
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Symbol Code

A 0

B 10

C 110

D 1111

E 1110

Consider the coding for ABCDE.

The code will be: 01011011111110

Can you decode it? 

0 . 10 . 110. 1111 . 1110

Huffman Coding

Analysis: With the given frequencies, the expected number of bits 

per character is: = 1X0.40 + 2X0.25+ 3X0.15 + 4X0.15 + 4 X 0.05 

= 2.25


