
BM267 1

BM267 - Introduction to Data

Structures

Ankara University

Computer Engineering Department
Bulent Tugrul

6. Elementary Sorting

Methods

BM267 2

Learn about

• Elementary sorting algorithms

• Selection sort

• Insertion sort

• Bubble sort

• Analysis of each sorting method

Objectives

BM267 3

Sorting

• Sorting takes an unordered collection and makes it

an ordered one.

512354277 101

1 2 3 4 5 6

5 12 35 42 77 101

1 2 3 4 5 6

BM267 4

Choosing a sorting algorithm

• Elementary sorting algorithms are usually slower, but

easy to implement.

• The more complex algorithms are not always the

preferred ones. (Needs more attention)

• Elementary algorithms are generally more appropriate

in the following situations:

• Less than a few hundred values to be sorted

• The values will be sorted just once

• Special cases such as:

• the input data are "almost sorted"

• there are many equal keys

BM267 5

Internal / external sorting

• If the file to be sorted can fit into computer’s
memory, then sorting method is called internal
sorting.

• Sorting files from tape or disk is called external
sorting.

• Partially sorted blocks need to be combined or
merged in some manner to eventually sort the entire
list

BM267 6

Element stability

• A sorting method is said to be stable if it preserves the relative
order of items with duplicated keys in the file. Items with
identical keys should appear in the same order as in the
original input.

• For instance, consider sorting a list of student records
alphabetically by name, and then sorting the list again, but this
time by letter grade in a particular course. If the sorting
algorithm is stable, then all the students who got "A" will be
listed alphabetically.

• Stability is a difficult property to achieve if we also want our
sorting algorithm to be efficient.

BM267 7

Element stability
Adams A

Black B

Brown D

Jackson B

Jones D

Smith A

Thompson D

Washington B

White C

Wilson C

Adams A

Smith A

Washington B

Jackson B

Black B

White C

Wilson C

Thompson D

Brown D

Jones D

Adams A

Smith A

Black B

Jackson B

Washington B

White C

Wilson C

Brown D

Jones D

Thompson D

BM267 8

• Many sorting algorithms move and interchange
records in memory several times during the process
of sorting.

• For large records, or when the data set is large, this is
inefficient.

• With "indirect sorting“, the indices (or pointers) of
the records are sorted, rather than the records
themselves.

Indirect sorting

BM267 9

Selection sort

• Selection sort works as follows:

• Find the smallest element in the array, and exchange it

with the element in the first position.

• Then, find second smallest element and exchange it with

the element in the second position.

• Continue in this way until the array is sorted.

25 50 10 95 75 30 70 55 60 80

10 50 25 95 75 30 70 55 60 80

i

BM267 10

10 50 25 95 75 30 70 55 60 80

i

Selection sort

10 25 50 95 75 30 70 55 60 80

10 25 30 95 75 50 70 55 60 80

10 25 30 50 75 95 70 55 60 80

10 25 30 50 55 95 70 75 60 80

10 25 30 50 55 60 70 75 95 80

BM267 11

10 25 30 50 55 60 70 75 95 80

Selection sort

10 25 30 50 55 60 70 75 95 80

10 25 30 50 55 60 70 75 80 95

BM267 12

void SelectionSort (int A[], int N)

{ int i,j,min;

for (i=0; i<N-1, i++)

{

/* find the the smallest among A[j]...A[n-1] */

/* place it in A[i] */

min = i;

for (j=i+1; j<N; j++)

if (A[j] < A[min])

min = j;

swap(A[i], A[min]);

}

}

Selection sort

BM267 13

25 10 75 25 95 15

Selection sort- Is selection sort stable?

10 25 75 25 95 15

10 15 75 25 95 25

10 15 25 75 95 25

10 15 25 25 95 75

10 15 25 25 75 95

BM267 14

Selection sort - analysis

Iteration 1:

• Find smallest value in a list of n values: n-1 comparisons

• Exchange values and move marker

Iteration 2:

• Find smallest value in a list of n-1 numbers: n-2 comparisons

• Exchange values and move marker

…

Iteration n-2:

• Find smallest value in a list of 2 numbers: 1 comparison

• Exchange values and move marker

Total: (n-1) + (n-2) + …. + 2 + 1 = n(n-1)/2

BM267 15

Space efficiency:

• No extra space used (except for a few
variables)

Time efficiency:

• The best-case and worst-case are same. All
input sequences need same number of
comparisons.

• the amount of work is the same:

T(n) = n(n-1)/2

Selection sort - analysis

BM267 16

Insertion sort

• Insert the first element of the unsorted array into

already sorted portion of the array by shifting all

larger elements to the right.

• Initially the sorted portion consists of the first

element.

• The sorted portion grows by one after every pass.

BM267 17

25 50 10 95 75 30 70 55 60 80

25 50 10 95 75 30 70 55 60 80

i

Insertion sort

10 25 50 95 75 30 70 55 60 80

10 25 50 95 75 30 70 55 60 80

10 25 50 75 95 30 70 55 60 80

10 25 30 50 75 95 70 55 60 80

BM267 18

90 80 70 60 50 40 30 20 10

i

Insertion sort- Worst Case

80 90 70 60 50 40 30 20 10

i

70 80 90 60 50 40 30 20 10

i

of Comparison = 1

of Comparison = 2

of Comparison = 3

60 70 80 90 50 40 30 20 10

i

of Comparison = 4

50 60 70 80 90 40 30 20 10

i

of Comparison = 5

BM267 19

40 50 60 70 80 90 30 20 10

i
of Comparison = 6

Insertion sort- Worst Case

30 40 50 60 70 80 90 20 10

i
of Comparison = 7

20 30 40 50 60 70 80 90 10

i
of Comparison = 8

10 20 30 40 50 60 70 80 90

BM267 20

Insertion sort- Worst Case

• For size n, total # of comparisons:

T(n)worst = n-1 + n-2 + n-3+ … + 2 + 1 = (n-1)n / 2

T(n) avg = N2/ 4

BM267 21

void insertionSort(int A[], int N)

{ int i, j, next;

for (i=1; i<N; i++)

{

next = A[i];

for(j=i; j>0 && next < A[j-1]; j--)

A[j] = A[j-1];

A[j] = next;

}

}

Insertion sort

BM267 22

Selection sort Insertion sort

scan unsorted portion of array scan sorted portion of array

the amount of work does not for already sorted arrays runs
depend on the type of input faster.

insert each element into its final after the insertion every element
position can be moved later.

minimal amount of element a lot of shifts.
exchanges

Comparing insertion sort / selection sort

BM267 23

Bubble sort
• Bubble sort compares adjacent elements of the list and

exchange them if they are out of order.

• After the first pass, we put the largest element to the
last position in the list.

• The next pass puts the second largest element in its
position(just before the last position).

25 50 10 95 75 30 70 55 60 80

25 10 50 95 75 30 55 70 60 80

First pass

25 10 50 95 75 30 55 70 60 80

BM267 24

25 10 50 75 95 30 55 70 60 80

Bubble sort

25 10 50 75 30 95 55 70 60 80

25 10 50 75 30 55 95 70 60 80

25 10 50 75 30 55 70 95 60 80

25 10 50 75 30 55 70 60 95 80

BM267 25

Bubble sort

25 10 50 75 30 55 70 60 80 95

void Bubblesort(int A[], int N)

for (i=0; i<N-1; i++)

for (j= 0; j<n-2-i; j++)

if (A[j+1] < A[j])

Swap(A[j], A[j+1]);

•For size n, total # of comparisons:

T(n) = n-1 + n-2 + n-3+ … + 2 + 1 = (n-1)n / 2

