
Bm 267 1

BM267 - Introduction to Data

Structures

Ankara University

Computer Engineering Department
Bulent Tugrul

7. Quicksort

Bm 267 2

• Quicksort uses a divide-and-conquer strategy

– A recursive approach

– The original problem partitioned into simpler

subproblems.

– Each sub problem considered independently.

• Subdivision continues until sub problems are

simple enough to be solved directly.

Quicksort

Bm 267 3

How to partition an array A[p,r]:

Quicksort - Example 1

2 8 7 1 3 5 4

p ... r

Choose some element called a pivot

(Usually the rightmost or leftmost element)

2 8 7 1 3 5 4

p ... r

Bm 267 4

p ... r

The array will have three sections, plus the pivot

element

values pivot values > pivot

untested

pivot

Quicksort - Example 1

i will point to the high end of the ‘smaller’ sublist

j will point to the high end of the ‘larger’ sublist

Bm 267 5

i,j

2 8 7 1 3 5 4

p ... r

i j

2 8 7 1 3 5 4

p ... r

i j

2 8 7 1 3 5 4

p ... r

i j

2 8 7 1 3 5 4

p ... r

i j

2 1 7 8 3 5 4

p r

i j

2 1 3 8 7 5 4

p ... r

Perform a sequence of exchanges so that

All elements that are less than pivot go to left and

All elements that are greater than the pivot go to right.

Quicksort - Example 1

Bm 267 6

i j

2 1 3 8 7 5 4

p .. r

i

2 1 3 4 7 5 8

p .. r

Quicksort - Example 1

• This operation divides the array into two smaller

sub arrays,

• Each of which may then be sorted independently in

the same way.

(exchange element i+1

with the pivot)

Bm 267 7

Quicksort (A[p..q])

If the array has 0 or 1 elements,

then return. // the array is sorted

else do:

Pick an element in the array to use as the pivot.

Split the remaining elements into two disjoint groups:

– "Smaller" elements not greater than the pivot, A[p...m-1]

– "Larger" elements greater than pivot, A[m+1… r]

Return the array rearranged as:

Quicksort(A[p...m-1]),

pivot,

Quicksort(A[m+1… r]).

Quicksort

Bm 267 8

• Select, arbitrarily, the first element, 75, as pivot.

• Search from right for the first element 75, (which is

60)

• Search from left for the first element > 75, (which is

88) i j

• Swap these two elements, and then repeat this process

Quicksort- Example 2

75 70 65 88 98 78 99 93 55 59 81 60

Here is a slightly different partitioning algorithm:

75 70 65 60 98 78 99 93 55 59 81 88

i j

Bm 267 9

75 70 65 60 98 78 99 93 55 59 81 88

75 70 65 60 59 78 99 93 55 98 81 88

75 70 65 60 59 55 99 93 78 98 81 88

55 70 65 60 59 75 99 93 78 98 81 88

When done, exchange the rightmost element in group
"Smaller" with the pivot

Quicksort- Example 2

75 is now placed appropriately.

Need to sort sublists on either side of 75.

i j

Bm 267 10

int partition(Item a[], int l, int r);

void quicksort(Item a[], int l, int r)

{ int m;

if (r <= l) return;

m = partition(a, l, r);

quicksort(a, l, m-1);

quicksort(a, m+1, r);

}

Quicksort

int partition(Item a[], int l, int r){

int i = l-1, j = r; Item v = a[r];

for (;;){

while (less(a[++i], v)) ;

while (less(v, a[--j])) if (j == l) break;

if (i >= j) break;

exch(a[i], a[j]);

}

exch(a[i], a[r]);

return i; }

Bm 267 11

Best Case

– If the pivot results in sub arrays of approximately

the same size.

– T(n) = 2T(n/2) + n – 1

= n log2 n

Quicksort - Analysis

Bm 267 12

Best case O(n log2n)

• We cut the array size in half each time

• So the depth of the recursion in log2n

• O(log2n) * O(n) = O(n log2n)

• Hence in the best and average cases, quicksort

has time complexity O(n log2n)

Quicksort - Analysis

Bm 267 13

Quicksort - Analysis

O(n2) worst-case

• List already ordered (either way)

• Then the pivot element is the largest or smallest
element: one of the sublists is almost always empty.

• Partitioning always divides the size n array into

these three parts:

• A length one part, containing the pivot itself

• A length zero part, and

• A length n-1 part, containing everything else

Bm 267 14

• We don’t recur on the zero-length part

• Recurring on the length n-1 part requires (in the

worst case) recurring to depth n-1

Quicksort - Analysis

Worst-case P = Pivot element

P

P

P

Bm 267 15

Quicksort - Analysis

• If the array is already sorted, Quicksort is
terrible: O(n2)

• However, Quicksort is on the average O(n
log2n)

• The constants are so good that Quicksort is
generally the fastest algorithm known

• Most real-world sorting is done by Quicksort

Bm 267 16

Quicksort - Possible Improvements

• Almost anything you can try to “improve”

Quicksort will actually slow it down

• One good idea is to switch to a different sorting

method when the subarrays get small (say, 10 or 12)

– Quicksort has too much overhead for small array sizes

• For large arrays, it might be a good idea to check

beforehand if the array is already sorted

Bm 267 17

• Often the list to be sorted is already partially ordered.

• An arbitrary pivot gives a poor partition for nearly sorted lists

• In these cases, virtually all the elements either go into the

group "Smaller" or to the "Larger", all through the recursive

calls.

• Quicksort takes quadratic time to do essentially nothing at all.

• There are better methods for selecting the pivot, such as the

median-of-three rule:

Select the median of the first, middle, and last elements

in each sublist as the pivot.

• Median-of-three rule will select a pivot closer to the middle of

the sublist than will the “first-element” rule.

Quicksort - Possible Improvements

Bm 267 18

#define M 10

void quicksort(Item a[], int l, int r)

{ int i;

if (r-l <= M) return;

exch(a[(l+r)/2], a[r-1]);

compexch(a[l], a[r-1]);

compexch(a[l], a[r]);

compexch(a[r-1], a[r]);

i = partition(a, l+1, r-1);

quicksort(a, l, i-1);

quicksort(a, i+1, r);

}

Quicksort - Possible Improvements

Bm 267 19

void sort(Item a[], int l, int r)

{

quicksort(a, l, r);

insertion(a, l, r);

}

Quicksort - Possible Improvements

