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• Quicksort uses a divide-and-conquer strategy

– A recursive approach 

– The original problem partitioned into simpler 

subproblems.

– Each sub problem considered independently. 

• Subdivision continues until sub problems are 

simple enough to be solved directly.

Quicksort 
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How to partition an array  A[p,r]:

Quicksort - Example 1

2 8 7 1 3 5 4

p ... r

Choose some element called a pivot 

(Usually the rightmost or leftmost element)

2 8 7 1 3 5 4

p ... r
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p ... r

The array will have three sections, plus the pivot 

element

values  pivot values > pivot

untested

pivot

Quicksort - Example 1

i  will point to the high end of the ‘smaller’ sublist  

j  will point to the high end of the ‘larger’ sublist
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i,j

2 8 7 1 3 5 4

p ... r

i j

2 8 7 1 3 5 4

p ... r

i j

2 8 7 1 3 5 4

p ... r

i j

2 8 7 1 3 5 4

p ... r

i j

2 1 7 8 3 5 4

p r

i j

2 1 3 8 7 5 4

p ... r

Perform a sequence of exchanges so that 

All elements that are less than pivot go to left and 

All elements that are greater than the pivot go to right. 

Quicksort - Example 1
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i j

2 1 3 8 7 5 4

p .. r

i

2 1 3 4 7 5 8

p .. r

Quicksort - Example 1

• This operation divides the array into two smaller 

sub arrays, 

• Each of which may then be sorted independently in 

the same way. 

(exchange element i+1 

with the pivot)
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Quicksort (A[p..q])

If the array has 0 or 1 elements, 

then return. // the array is sorted

else do:

Pick an element in the array to use as the pivot.

Split the remaining elements into two disjoint groups:

– "Smaller"  elements  not greater than the pivot, A[p...m-1]

– "Larger"    elements greater than pivot,         A[m+1… r]

Return the array rearranged as:

Quicksort(A[p...m-1]), 

pivot, 

Quicksort(A[m+1… r]). 

Quicksort 
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• Select, arbitrarily, the first element, 75,  as pivot.

• Search from right for the first element  75, (which is 

60)

• Search from left for the first element > 75, (which is 

88) i                                             j

• Swap these two elements, and then repeat this process

Quicksort- Example 2

75 70 65 88 98 78 99 93 55 59 81 60

Here is a slightly different partitioning algorithm:

75 70 65 60 98 78 99 93 55 59 81 88

i j
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75 70 65 60 98 78 99 93 55 59 81 88

75 70 65 60 59 78 99 93 55 98 81 88

75 70 65 60 59 55 99 93 78 98 81 88

55 70 65 60 59 75 99 93 78 98 81 88

When done, exchange the rightmost element in group 
"Smaller" with the pivot

Quicksort- Example 2

75 is now placed appropriately.

Need to sort sublists on either side of 75.

i j
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int partition(Item a[], int l, int r);

void quicksort(Item a[], int l, int r)

{ int m;

if (r <= l) return;

m = partition(a, l, r);

quicksort(a, l, m-1);

quicksort(a, m+1, r);

}

Quicksort

int partition(Item a[], int l, int r){ 

int i = l-1, j = r; Item v = a[r];

for (;;){ 

while (less(a[++i], v)) ;

while (less(v, a[--j])) if (j == l) break;

if (i >= j) break;

exch(a[i], a[j]);

}

exch(a[i], a[r]);

return i;  }
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Best Case

– If the pivot results in sub arrays of approximately 

the same size. 

– T(n) = 2T(n/2) + n – 1 

= n log2 n

Quicksort - Analysis
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Best case O(n log2n) 

• We cut the array size in half each time

• So the depth of the recursion in log2n

• O(log2n) * O(n) = O(n log2n) 

• Hence in the best and average cases, quicksort 

has time complexity O(n log2n)

Quicksort - Analysis
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Quicksort - Analysis

O(n2) worst-case

• List already ordered (either way)

• Then the pivot element is the largest or smallest 
element: one of the sublists is almost always empty.

• Partitioning always divides the size n array into 

these three parts:

• A length one part, containing the pivot itself

• A length zero part, and

• A length n-1 part, containing everything else
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• We don’t recur on the zero-length part

• Recurring on the length n-1 part requires (in the 

worst case) recurring to depth n-1

Quicksort - Analysis

Worst-case P = Pivot element

P

P

P



Bm 267 15

Quicksort - Analysis

• If the array is already sorted, Quicksort is 
terrible: O(n2)

• However, Quicksort is on the average O(n 
log2n)

• The constants are so good that Quicksort is 
generally the fastest algorithm known

• Most real-world sorting is done by Quicksort
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Quicksort - Possible Improvements

• Almost anything you can try to “improve” 

Quicksort will actually slow it down

• One good idea is to switch to a different sorting 

method when the subarrays get small (say, 10 or 12)

– Quicksort has too much overhead for small array sizes

• For large arrays, it might be a good idea to check 

beforehand if the array is already sorted
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• Often the list to be sorted is already partially ordered.

• An arbitrary pivot gives a poor partition for nearly sorted lists 

• In these cases,  virtually all the elements either go into the 

group "Smaller" or to the "Larger", all through the recursive 

calls. 

• Quicksort takes quadratic time to do essentially nothing at all.

• There are better methods for selecting the pivot, such as the 

median-of-three rule:

Select the median of the first, middle, and last elements 

in each sublist as the pivot.

• Median-of-three rule will select a pivot closer to the middle of 

the sublist than will the “first-element” rule.

Quicksort - Possible Improvements
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#define M 10

void quicksort(Item a[], int l, int r)

{ int i; 

if (r-l <= M) return;

exch(a[(l+r)/2], a[r-1]);

compexch(a[l], a[r-1]); 

compexch(a[l], a[r]); 

compexch(a[r-1], a[r]);

i = partition(a, l+1, r-1);

quicksort(a, l, i-1);

quicksort(a, i+1, r);

} 

Quicksort - Possible Improvements



Bm 267 19

void sort(Item a[], int l, int r)

{ 

quicksort(a, l, r);

insertion(a, l, r);

}

Quicksort - Possible Improvements


