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(Binary) Heap Structure

The heap data structure iIs an array organized as a
almost complete binary tree (which 1Is always
balanced ).

The tree Is completely filled (except possibly for the
right side of the lowest level)

Which means, if N is the number of heap elements, the
first N array elements are always full.
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(Binary) Heap Structure

Structural Properties:

5
d77%

* The root of the tree iIs located

In the first array element A[1]. 4

3)

* The left subtree of node A[i] 6
Is located in A[2i1] ;

* The right subtree of node A[i] 13
IS located In A[21+1] 11

(Note the 1-based notation for array indices)
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(Binary) Heap Structure

More structural Properties:

» Left subtrees are rooted on even numbered array

elements,

« Right subtrees are rooted on odd numbered array

elements.
« Parent of node I Isinnode A[

» Heap with N elements has heig

i/2]]

ht = [ log, N_.

(L x ] denotes truncation to integer.)
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(Binary) Heap Structure

The tree nodes are located in the array in a top-down, left-to-
right traversal order.

» AJ1] contains the largest element;

« Elements in A[2] .. A[N] are not sorted.

[22]12f14] 9 |ua|13]s5|a]2]8| | | |
1 2 3 4 5 6 7 8 9 10 11 12 .
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(Binary) Heap Structure

Content Properties: A heap must satisfy either of:
« Max-Heap property: Afparent()] > Ali]
« The value at node i cannot be greater than its parent.

» Which means that the value at the root has the largest value
currently in the heap.

* Min-Heap property: A[parent(i)] <A]Ji]
« The value at node 1 cannot be smaller than its parent.

 \Which means that the value at the root has the minimum
value currently in the heap.
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(Binary) Heap Structure

Some terminology:

« Height of a node: the number of segments of a downward
path to the farthest leaf node.

« Height of the tree: the height of the root node.

Helght 0 e
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Heap Operations

MaxHeaplnsert( )
MaxHeapify( )
BuildMaxHeap( )
HeapSort( )
HeapExtractMax( )

Adds an item to the heap

Maintains the heap property:.

Converts an unordered array into a heap
Sorts the array in place

Removes the item at the root
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MaxHeaplnsert( ) - Insert an item into the heap

Given: A heap of size M, and a new element.
Operation: Insert the new element into next available slot.

afiefuofsios] | | | | | | |

1 2 3 4 5 6 7 8 9 10 11 12 .

0 e @ <:: Next empty tree node
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MaxHeaplnsert( )

Given: Aheap of size N, and a new element.
Operation:

 Insert new element into next available slot.

« Bubble up until the heap property is established

Laliofuofsios] | | | | | | |

1 2 3 4 5 6 7 8 9 10 11 12 .

(12) (13) Now the heap is of
size N+1

© (5) (11) O(log, N) operations
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MaxHeapify() - Combine heaps with the parent

Given: Node 1, whose children at nodes 2i and 2i+1
already heapified.

Operation: Let the value of A[i] float down until the node
A[i] becomes a heap.

| 4f12|1n]of2]6]7]3[8]2]5]
1 2 3 4 5 6 7 8 9 10 11
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MaxHeapify() - Combine heaps with the parent

If the heap property is not satisfied, exchange the child node
with the largest value and A[i].

| 4f12|1n]of2]6]7]3[8]2]5]
1 2 3 4 5 6 7 8 9 10 11
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MaxHeapify() - Combine heaps with the parent

If the heap property is not satisfied at the selected child node,
repeat the process.

O(log N) operations.

| 4f12|1n]of2]6]7]3[8]2]5]
1 2 3 4 5 6 7 8 9 10 11
BLM 267 13




BuildMaxHeap( ) - Convert an array into a heap

Given: An unordered array of size N.

Operation:
« Convert each node in the tree into a heap, bottom-up.
» Nodes A[LN/2J+1]..A[N]) are already heaps of size 1.

« Convert nodes A[LN/2] .. 1 into heaps, using MaxHeapify(i)

O(N) MaxHeapify calls

| 4f12|1n]of2]6]7]3[8]2]5]
1.2.3 4 5 6 7 8 9 10 11




HeapExtractMax( ) - Remove the item at the root

Given: A heap of size N,
Operation:
 Exchange root with rightmost leaf.

|13]12f1a]o]s5]6|7[3]8]2]2]
1 2 3 45 6 7 8 9 10 1
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HeapExtractMax( ) - Remove the item at the root

Let the value of A[1] float down until the heap property is
established.

Proceed in the direction of the child node with the larger value.

(12)
(12 (11) (11)

OOO® OOOL®

Not in heap
any longer
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HeapExtractMax( ) - Remove the item at the root

Proceed in the direction of the child node with the larger value.

Heap property satisfied.

O(log N) operations.
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Illustrate the operation of Heapsort(A) on the array
whose element values are:

|27]17|10]16]|13] 9|2 |5]|7]22] 4|8 ]3] 0]
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Note: Since there a 14 nodes, and Ig 8 =3 <log 14 <log 16 =4,
* there are 4 levels (0,1,2 and 3) in the tree,
 The height of the tree is 3.
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Heapsort

exchange A[1] ©& A[i]
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Max-Heapify(A,1)




Heap property is satisfied for
the first N-2 elements.

) Last two elements are in
their (sorted) place.

® 00 0 O

Perform N-1 extract-max operations during sort.
O(N log N).

NoO extra storage.
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Heapsort - Analysis

» Here’s how the heapsort algorithm starts:
heapify the array;

« Heapifying the array: we add each of N nodes

 Each node has to float up, possibly as far as the
root

* Since the binary tree is perfectly balanced,
sifting up a single node takes O(log n) time

* Since we do this n times, heapifying takes
n*O(log n) time, that i1s, O(n log n) time
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Heapsort - Analysis

Here’s the rest of the algorithm:

while the array isn't empty {
remove and replace the root;
heapify the new root node;

>

We do the while loop n times (actually, n-1 times),
because we remove one of the n nodes each time

Removing and replacing the root takes O(1) time

Therefore, the total time is n. How long does the
heapify( ) operation take?
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Heapsort - Analysis

 To heapify the root node, we have to follow one path
from the root to a leaf node (and we might stop before
we reach a leaf)

» The binary tree Is perfectly balanced

» Therefore, this path is O(log n) long
« And we only do O(1) operations at each node
 Therefore, heapify( ) takes O(log n) times

 Since we heapify inside a while loop that we do n
times, the total time for the while loop is
n*O(log n), or O(nlog n)
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Heapsort - Analysis

* Here’s the algorithm again:

heapify the array;

while the array isn't empty {
remove and replace the root;
reheap the new root node;

}
We have seen that heapifying takes O(n log n) time

The while loop takes O(n log n) time
The total time is therefore O(n log n) + O(n log n)
Which is equivalentto O(n log n) time
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Priority Queue

 Problem:

« Maintain a dynamically changing set S so that every
element In S has a priority (key) k.

 Allow efficiently reporting the element with maximal
priority in S.
 Allow the priority of an element in S to be Increased.
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Priority Queue

« A (max-)priority queue supports the following operations:

 Insert(S, X, k): Insert element x into S and give it priority k.

Delete(S, x): Delete element x from S.

Find-Max(S): Report the element with maximal priority in S.

Delete-Max(S): Report the element with maximal priority in
S and remove it from S.

Change-Priority(S, x, k): Change the priority of x to k.
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Binary Heap as Priority Queue

 Binary heaps are binary trees that satisfy the following
heap property:

» For every node v with parent u, let k and k , be the
priorities of the elements stored at v and u.

e Then kV <Kk,
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Heaps, Priority Queues

Priority gueues support operations:
—Insert, Delete, and Increase-Key
—Find-Max and Delete-Max

Binary heaps are priority queues that support the
above operations in O(lg n) time.

We can sort using a priority queue.

Heapsort:
—Sorts using the priority-gueue idea
—Takes O(n Ig n) time (as Mergesort)
—Sorts in place (as Insertion Sort)
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