BMZ267 - Introduction to Data
Structures

9. Heapsort

Ankara University

Computer Engineering Department
Bulent Tugrul

BLM 267 1

(Binary) Heap Structure

The heap data structure iIs an array organized as a
almost complete binary tree (which 1Is always
balanced).

The tree Is completely filled (except possibly for the
right side of the lowest level)

Which means, if N is the number of heap elements, the
first N array elements are always full.

BLM 267 2

(Binary) Heap Structure

Structural Properties:

5
d77%

* The root of the tree iIs located

In the first array element A[1]. 4

3)

* The left subtree of node A[i] 6
Is located in A[2i1] ;

* The right subtree of node A[i] 13
IS located In A[21+1] 11

(Note the 1-based notation for array indices)

BLM 267 3

(Binary) Heap Structure

More structural Properties:

» Left subtrees are rooted on even numbered array

elements,

« Right subtrees are rooted on odd numbered array

elements.
« Parent of node I Isinnode A[

» Heap with N elements has heig

i/2]]

ht = [log, N_.

(L x] denotes truncation to integer.)

BLM 267

(Binary) Heap Structure

The tree nodes are located in the array in a top-down, left-to-
right traversal order.

» AJ1] contains the largest element;

« Elements in A[2] .. A[N] are not sorted.

[22]12f14] 9 |ua|13]s5|a]2]8| | | |
1 2 3 4 5 6 7 8 9 10 11 12 .
BLM 267 5

(Binary) Heap Structure

Content Properties: A heap must satisfy either of:
« Max-Heap property: Afparent()] > Ali]
« The value at node i cannot be greater than its parent.

» Which means that the value at the root has the largest value
currently in the heap.

* Min-Heap property: A[parent(i)] <A]Ji]
« The value at node 1 cannot be smaller than its parent.

 \Which means that the value at the root has the minimum
value currently in the heap.

BLM 267 6

(Binary) Heap Structure

Some terminology:

« Height of a node: the number of segments of a downward
path to the farthest leaf node.

« Height of the tree: the height of the root node.

Helght 0 e

BLM 267 7

Heap Operations

MaxHeaplnsert()
MaxHeapify()
BuildMaxHeap()
HeapSort()
HeapExtractMax()

Adds an item to the heap

Maintains the heap property:.

Converts an unordered array into a heap
Sorts the array in place

Removes the item at the root

BLM 267 8

MaxHeaplnsert() - Insert an item into the heap

Given: A heap of size M, and a new element.
Operation: Insert the new element into next available slot.

afiefuofsios] | | | | | | |

1 2 3 4 5 6 7 8 9 10 11 12 .

0 e @ <:: Next empty tree node

BLM 267 9

MaxHeaplnsert()

Given: Aheap of size N, and a new element.
Operation:

 Insert new element into next available slot.

« Bubble up until the heap property is established

Laliofuofsios] | | | | | | |

1 2 3 4 5 6 7 8 9 10 11 12 .

(12) (13) Now the heap is of
size N+1

© (5) (11) O(log, N) operations

BLM 267 10

MaxHeapify() - Combine heaps with the parent

Given: Node 1, whose children at nodes 2i and 2i+1
already heapified.

Operation: Let the value of A[i] float down until the node
A[i] becomes a heap.

| 4f12|1n]of2]6]7]3[8]2]5]
1 2 3 4 5 6 7 8 9 10 11
BLM 267 11

MaxHeapify() - Combine heaps with the parent

If the heap property is not satisfied, exchange the child node
with the largest value and A[i].

| 4f12|1n]of2]6]7]3[8]2]5]
1 2 3 4 5 6 7 8 9 10 11
BLM 267 12

MaxHeapify() - Combine heaps with the parent

If the heap property is not satisfied at the selected child node,
repeat the process.

O(log N) operations.

| 4f12|1n]of2]6]7]3[8]2]5]
1 2 3 4 5 6 7 8 9 10 11
BLM 267 13

BuildMaxHeap() - Convert an array into a heap

Given: An unordered array of size N.

Operation:
« Convert each node in the tree into a heap, bottom-up.
» Nodes A[LN/2J+1]..A[N]) are already heaps of size 1.

« Convert nodes A[LN/2] .. 1 into heaps, using MaxHeapify(i)

O(N) MaxHeapify calls

| 4f12|1n]of2]6]7]3[8]2]5]
1.2.3 4 5 6 7 8 9 10 11

HeapExtractMax() - Remove the item at the root

Given: A heap of size N,
Operation:
 Exchange root with rightmost leaf.

|13]12f1a]o]s5]6|7[3]8]2]2]
1 2 3 45 6 7 8 9 10 1
BLM 267 15

HeapExtractMax() - Remove the item at the root

Let the value of A[1] float down until the heap property is
established.

Proceed in the direction of the child node with the larger value.

(12)
(12 (11) (11)

OOO® OOOL®

Not in heap
any longer

BLM 267 16

HeapExtractMax() - Remove the item at the root

Proceed in the direction of the child node with the larger value.

Heap property satisfied.

O(log N) operations.

BLM 267 17

Illustrate the operation of Heapsort(A) on the array
whose element values are:

|27]17|10]16]|13] 9|2 |5]|7]22] 4|8]3] 0]
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Note: Since there a 14 nodes, and Ig 8 =3 <log 14 <log 16 =4,
* there are 4 levels (0,1,2 and 3) in the tree,
 The height of the tree is 3.

BLM 267 18

Heapsort

exchange A[1] ©& A[i]

BLM 267 19

Max-Heapify(A,1)

Heap property is satisfied for
the first N-2 elements.

) Last two elements are in
their (sorted) place.

® 00 0 O

Perform N-1 extract-max operations during sort.
O(N log N).

NoO extra storage.

BLM 267 22

Heapsort - Analysis

» Here’s how the heapsort algorithm starts:
heapify the array;

« Heapifying the array: we add each of N nodes

 Each node has to float up, possibly as far as the
root

* Since the binary tree is perfectly balanced,
sifting up a single node takes O(log n) time

* Since we do this n times, heapifying takes
n*O(log n) time, that i1s, O(n log n) time

BLM 267 23

Heapsort - Analysis

Here’s the rest of the algorithm:

while the array isn't empty {
remove and replace the root;
heapify the new root node;

>

We do the while loop n times (actually, n-1 times),
because we remove one of the n nodes each time

Removing and replacing the root takes O(1) time

Therefore, the total time is n. How long does the
heapify() operation take?

BLM 267 24

Heapsort - Analysis

 To heapify the root node, we have to follow one path
from the root to a leaf node (and we might stop before
we reach a leaf)

» The binary tree Is perfectly balanced

» Therefore, this path is O(log n) long
« And we only do O(1) operations at each node
 Therefore, heapify() takes O(log n) times

 Since we heapify inside a while loop that we do n
times, the total time for the while loop is
n*O(log n), or O(nlog n)

BLM 267 25

Heapsort - Analysis

* Here’s the algorithm again:

heapify the array;

while the array isn't empty {
remove and replace the root;
reheap the new root node;

}
We have seen that heapifying takes O(n log n) time

The while loop takes O(n log n) time
The total time is therefore O(n log n) + O(n log n)
Which is equivalentto O(n log n) time

BLM 267 26

Priority Queue

 Problem:

« Maintain a dynamically changing set S so that every
element In S has a priority (key) k.

 Allow efficiently reporting the element with maximal
priority in S.
 Allow the priority of an element in S to be Increased.

BLM 267 27

Priority Queue

« A (max-)priority queue supports the following operations:

 Insert(S, X, k): Insert element x into S and give it priority k.

Delete(S, x): Delete element x from S.

Find-Max(S): Report the element with maximal priority in S.

Delete-Max(S): Report the element with maximal priority in
S and remove it from S.

Change-Priority(S, x, k): Change the priority of x to k.

BLM 267 28

Binary Heap as Priority Queue

 Binary heaps are binary trees that satisfy the following
heap property:

» For every node v with parent u, let k and k , be the
priorities of the elements stored at v and u.

e Then kV <Kk,

BLM 267 29

Heaps, Priority Queues

Priority gueues support operations:
—Insert, Delete, and Increase-Key
—Find-Max and Delete-Max

Binary heaps are priority queues that support the
above operations in O(lg n) time.

We can sort using a priority queue.

Heapsort:
—Sorts using the priority-gueue idea
—Takes O(n Ig n) time (as Mergesort)
—Sorts in place (as Insertion Sort)

BLM 267

30

