
BLM 267 1

BM267 - Introduction to Data

Structures

Ankara University

Computer Engineering Department
Bulent Tugrul

9. Heapsort

BLM 267 2

(Binary) Heap Structure

The heap data structure is an array organized as a

almost complete binary tree (which is always

balanced).

The tree is completely filled (except possibly for the

right side of the lowest level)

Which means, if N is the number of heap elements, the

first N array elements are always full.

BLM 267 3

(Binary) Heap Structure

Structural Properties:

• The root of the tree is located

in the first array element A[1].

(Note the 1-based notation for array indices)

• The left subtree of node A[i]

is located in A[2i]

• The right subtree of node A[i]

is located in A[2i+1]

1

2

3

4

5

6

7

8

9

10

11

BLM 267 4

• Left subtrees are rooted on even numbered array

elements,

• Right subtrees are rooted on odd numbered array

elements.

• Parent of node i is in node A[ i / 2 ].

• Heap with N elements has height = log2 N.

( x  denotes truncation to integer.)

(Binary) Heap Structure

More structural Properties:

BLM 267 5

22

4

14

13 5119

12

2 8

22 12 14 9 11 13 5 4 2 8

1 2 3 4 5 6 7 8 9 10 11 12 ..

(Binary) Heap Structure

The tree nodes are located in the array in a top-down, left-to-

right traversal order.

• A[1] contains the largest element;

• Elements in A[2] .. A[N] are not sorted.

BLM 267 6

(Binary) Heap Structure

Content Properties: A heap must satisfy either of:

• Max-Heap property: A[parent(i)] A[i]

• The value at node i cannot be greater than its parent.

• Which means that the value at the root has the largest value

currently in the heap.

• Min-Heap property: A[parent(i)] A[i]

• The value at node i cannot be smaller than its parent.

• Which means that the value at the root has the minimum

value currently in the heap.

BLM 267 7

Some terminology:

• Height of a node: the number of segments of a downward

path to the farthest leaf node.

• Height of the tree: the height of the root node.

(Binary) Heap Structure

Height 0

Height 1

Height 2

Height 0

Height 1

BLM 267 8

Heap Operations

MaxHeapInsert() Adds an item to the heap

MaxHeapify() Maintains the heap property.

BuildMaxHeap() Converts an unordered array into a heap

HeapSort() Sorts the array in place

HeapExtractMax() Removes the item at the root

BLM 267 9

MaxHeapInsert() - Insert an item into the heap

14 12 11 9 5 13

1 2 3 4 5 6 7 8 9 10 11 12 ..

Given: A heap of size M, and a new element.

Operation: Insert the new element into next available slot.

14

12

9 5

11

13 Next empty tree node

BLM 267 10

MaxHeapInsert()

14 12 11 9 5 13

1 2 3 4 5 6 7 8 9 10 11 12 ..

Given: A heap of size N, and a new element.

Operation:

• Insert new element into next available slot.

• Bubble up until the heap property is established

14

12

9 5 11

13 Now the heap is of

size N+1

O(log2 N) operations

BLM 267 11

MaxHeapify() - Combine heaps with the parent

Given: Node i, whose children at nodes 2i and 2i+1

already heapified.

Operation: Let the value of A[i] float down until the node

A[i] becomes a heap.

4

12

9 2

1 58

11

76

13
4 12 11 9 2 6 7 13 8 1 5

1 2 3 4 5 6 7 8 9 10 11

BLM 267 12

MaxHeapify() - Combine heaps with the parent

4

12

9 2

1 58

11

76

13
4 12 11 9 2 6 7 13 8 1 5

1 2 3 4 5 6 7 8 9 10 11

If the heap property is not satisfied, exchange the child node

with the largest value and A[i].

BLM 267 13

MaxHeapify() - Combine heaps with the parent

4

12

9 5

1 28

11

76

13
4 12 11 9 2 6 7 13 8 1 5

1 2 3 4 5 6 7 8 9 10 11

If the heap property is not satisfied at the selected child node,

repeat the process.

O(log N) operations.

BLM 267 14

BuildMaxHeap() - Convert an array into a heap

Given: An unordered array of size N.

Operation:

• Convert each node in the tree into a heap, bottom-up.

• Nodes A[N/2+1]..A[N]) are already heaps of size 1.

• Convert nodes A[N/2] .. 1 into heaps, using MaxHeapify(i)

4

12

9 2

1 58

11

76

13
4 12 11 9 2 6 7 13 8 1 5

1 2 3 4 5 6 7 8 9 10 11

O(N) MaxHeapify calls

BLM 267 15

HeapExtractMax() - Remove the item at the root

Given: A heap of size N,

Operation:

• Exchange root with rightmost leaf.

13

12

9 5

1 28

11

76

3
13 12 11 9 5 6 7 3 8 1 2

1 2 3 4 5 6 7 8 9 10 11

BLM 267 16

HeapExtractMax() - Remove the item at the root

2

12

9 5

1 138

11

76

3

Let the value of A[1] float down until the heap property is

established.

Proceed in the direction of the child node with the larger value.

12

2

9 5

1 138

11

76

3

Not in heap

any longer

BLM 267 17

HeapExtractMax() - Remove the item at the root

Proceed in the direction of the child node with the larger value.

O(log N) operations.

12

9

8 5

12

11

76

3

12

9

2 5

1 138

11

76

3

Heap property satisfied.

13

BLM 267 18

Illustrate the operation of Heapsort(A) on the array
whose element values are:

Note: Since there a 14 nodes, and lg 8 = 3 < log 14 < log 16 = 4,

• there are 4 levels (0,1,2 and 3) in the tree,

• The height of the tree is 3.

Heapsort()

27 17 10 16 13 9 1 5 7 12 4 8 3 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

17 10

16 13 9 1

5 7 12 4 8 3

27

0

BLM 267 19

Heapsort

17 10

16 13 9 1

5 7 12 4 8 3

27

0

0 10

16 13 9 1

5 7 12 4 8 3

17

27

Max-Heapify(A,1)
27

0

17 10

16 13 9 1

5 7 12 4 8 3

exchange A[1]  A[i]

Not in heap

any longer

BLM 267 20

Heapsort

16 10

0 13 9 1

5 7 12 4 8 3

17

27

16 10

7 13 9 1

5 0 12 4 8 3

17

27

16 10

7 13 9 1

5 0 12 4 8 17

3

27

exchange A[1]  A[i]

Not in heap

any longer

BLM 267 21

Max-Heapify(A,1)

16 10

7 13 9 1

5 0 12 4 8 17

3

27
3 10

7 13 9 1

5 0 12 4 8 17

16

27

13 10

7 3 9 1

5 0 12 4 8 17

16

27

Heapsort

BLM 267 22

Heapsort

13 10

7 12 9 1

5 0 3 4 8 17

16

27

Heap property is satisfied for

the first N-2 elements.

Last two elements are in

their (sorted) place.

Perform N-1 extract-max operations during sort.

O(N log N).

No extra storage.

BLM 267 23

• Here’s how the heapsort algorithm starts:

heapify the array;

• Heapifying the array: we add each of n nodes

• Each node has to float up, possibly as far as the

root

• Since the binary tree is perfectly balanced,

sifting up a single node takes O(log n) time

• Since we do this n times, heapifying takes

n*O(log n) time, that is, O(n log n) time

Heapsort - Analysis

BLM 267 24

• Here’s the rest of the algorithm:
while the array isn’t empty {

remove and replace the root;

heapify the new root node;
}

• We do the while loop n times (actually, n-1 times),

because we remove one of the n nodes each time

• Removing and replacing the root takes O(1) time

• Therefore, the total time is n. How long does the

heapify() operation take?

Heapsort - Analysis

BLM 267 25

• To heapify the root node, we have to follow one path
from the root to a leaf node (and we might stop before
we reach a leaf)

• The binary tree is perfectly balanced

• Therefore, this path is O(log n) long

• And we only do O(1) operations at each node

• Therefore, heapify() takes O(log n) times

• Since we heapify inside a while loop that we do n
times, the total time for the while loop is

n*O(log n), or O(n log n)

Heapsort - Analysis

BLM 267 26

• Here’s the algorithm again:
heapify the array;

while the array isn’t empty {

remove and replace the root;

reheap the new root node;
}

• We have seen that heapifying takes O(n log n) time

• The while loop takes O(n log n) time

• The total time is therefore O(n log n) + O(n log n)

• Which is equivalent to O(n log n) time

Heapsort - Analysis

BLM 267 27

Priority Queue

• Problem:

• Maintain a dynamically changing set S so that every

element in S has a priority (key) k.

• Allow efficiently reporting the element with maximal

priority in S.

• Allow the priority of an element in S to be increased.

BLM 267 28

• A (max-)priority queue supports the following operations:

• Insert(S, x, k): Insert element x into S and give it priority k.

• Delete(S, x): Delete element x from S.

• Find-Max(S): Report the element with maximal priority in S.

• Delete-Max(S): Report the element with maximal priority in
S and remove it from S.

• Change-Priority(S, x, k): Change the priority of x to k.

Priority Queue

BLM 267 29

41

23

27 13

54

3

75

4

65

14

• Binary heaps are binary trees that satisfy the following

heap property:

• For every node v with parent u, let k
v

and k
u

be the

priorities of the elements stored at v and u.

• Then k
v

≤ k
u
.

Binary Heap as Priority Queue

BLM 267 30

• Priority queues support operations:

– Insert, Delete, and Increase-Key

– Find-Max and Delete-Max

• Binary heaps are priority queues that support the

above operations in O(lg n) time.

• We can sort using a priority queue.

• Heapsort:

– Sorts using the priority-queue idea

– Takes O(n lg n) time (as Mergesort)

– Sorts in place (as Insertion Sort)

Heaps, Priority Queues

