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(Binary) Heap Structure

The heap data structure is an array organized as a

almost complete binary tree (which is always

balanced ).

The tree is completely filled (except possibly for the

right side of the lowest level)

Which means, if N is the number of heap elements, the

first N array elements are always full.
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(Binary) Heap Structure

Structural Properties:

• The root of the tree is located 

in the first array element A[1].

(Note the 1-based notation for array indices)

• The left subtree of node A[i] 

is located in  A[2i]

• The right subtree of node A[i] 

is located in A[2i+1]
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• Left subtrees are rooted on even numbered array 

elements,

• Right subtrees are rooted on odd numbered array 

elements.

• Parent of node i  is in node  A[  i / 2  ].

• Heap with N elements has height = log2 N.

(  x  denotes truncation to integer.)

(Binary) Heap Structure

More structural Properties:
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(Binary) Heap Structure

The tree nodes are located in the array in a top-down, left-to-

right traversal order.

• A[1] contains the largest element;

• Elements in A[2] .. A[N] are not sorted.



BLM 267 6

(Binary) Heap Structure

Content Properties:  A heap must satisfy either of:

• Max-Heap property:    A[parent(i)] A[i]     

• The value at node  i  cannot be greater than its parent. 

• Which means that the value at the root has the largest value 

currently in the heap.

• Min-Heap property:    A[parent(i)] A[i] 

• The value at node  i  cannot be smaller than its parent.

• Which means that the value at the root has the minimum 

value currently in the heap.
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Some terminology:

• Height of a node:  the number of segments of a downward 

path to the farthest leaf node.

• Height of the tree:  the height of the root node.

(Binary) Heap Structure

Height 0

Height 1

Height 2

Height 0

Height 1



BLM 267 8

Heap Operations

MaxHeapInsert( )   Adds an item to the heap

MaxHeapify( ) Maintains the heap property.

BuildMaxHeap( ) Converts an unordered array into a heap

HeapSort( ) Sorts the array in place

HeapExtractMax( ) Removes the item at the root
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MaxHeapInsert( ) - Insert an item into the heap

14 12 11 9 5 13

1 2 3 4 5 6 7 8 9 10 11 12 ..

Given:   A heap of size M,  and a new element.

Operation: Insert the new element into next available slot.
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MaxHeapInsert( )

14 12 11 9 5 13

1 2 3 4 5 6 7 8 9 10 11 12 ..

Given:   A heap of size N,  and a new element.

Operation:

• Insert new element into next available slot.

• Bubble up until the heap property is established
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13 Now the heap is of 

size N+1

O(log2 N) operations
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MaxHeapify( ) - Combine heaps with the parent

Given:   Node i,   whose children at nodes 2i and 2i+1 

already heapified.

Operation:   Let the value of A[i] float down until the node 

A[i] becomes a heap.
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MaxHeapify( ) - Combine heaps with the parent
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If the heap property is not satisfied,  exchange the child node 

with the largest value and A[i]. 
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MaxHeapify( ) - Combine heaps with the parent
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If the heap property is not satisfied at the selected child node,  

repeat the process. 

O(log N) operations.
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BuildMaxHeap( ) - Convert an array into a heap

Given:   An unordered array of size N.

Operation:

• Convert each node in the tree into a heap, bottom-up.

• Nodes A[N/2+1]..A[N])  are already heaps of size 1.

• Convert nodes A[N/2] .. 1 into heaps, using  MaxHeapify(i)

4

12

9 2

1 58

11

76

13
4 12 11 9 2 6 7 13 8 1 5

1 2 3 4 5 6 7 8 9 10 11

O(N) MaxHeapify calls
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HeapExtractMax( ) - Remove the item at the root

Given: A heap of size N, 

Operation:

• Exchange root with rightmost leaf.

13

12

9 5

1 28

11

76

3
13 12 11 9 5 6 7 3 8 1 2

1 2 3 4 5 6 7 8 9 10 11



BLM 267 16

HeapExtractMax( ) - Remove the item at the root
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Let the value of A[1] float down until the heap property is 

established.

Proceed in the direction of the child node with the larger value. 
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HeapExtractMax( ) - Remove the item at the root

Proceed in the direction of the child node with the larger value. 

O(log N) operations.
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Illustrate the operation of Heapsort(A) on the array 
whose element values are:

Note: Since there a 14 nodes, and lg 8 = 3 < log 14 < log 16 = 4,

• there are 4 levels (0,1,2 and 3) in the tree,

• The height of the tree is 3.

Heapsort( )
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Heapsort
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exchange A[1]  A[i]

Not in heap 

any longer
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Heapsort
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Not in heap 

any longer



BLM 267 21

Max-Heapify(A,1)
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Heapsort
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Heapsort

13 10

7 12 9 1

5 0 3 4 8 17

16

27

Heap property is satisfied for 

the first N-2 elements.    

Last two elements are in 

their (sorted) place. 

Perform N-1 extract-max operations during sort.

O(N log N).

No extra storage.
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• Here’s how the heapsort algorithm starts:

heapify the array;

• Heapifying the array: we add each of n nodes

• Each node has to float up, possibly as far as the 

root

• Since the binary tree is perfectly balanced, 

sifting up a single node takes O(log n) time

• Since we do this n times, heapifying takes 

n*O(log n) time, that is, O(n log n) time

Heapsort - Analysis
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• Here’s the rest of the algorithm:
while the array isn’t empty {

remove and replace the root;

heapify the new root node;
}

• We do the while loop n times (actually, n-1 times), 

because we remove one of the n nodes each time

• Removing and replacing the root takes O(1) time

• Therefore, the total time is n. How long does the 

heapify( ) operation take?

Heapsort - Analysis
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• To heapify the root node, we have to follow one path
from the root to a leaf node (and we might stop before 
we reach a leaf)

• The binary tree is perfectly balanced

• Therefore, this path is O(log n) long

• And we only do O(1) operations at each node

• Therefore, heapify( ) takes O(log n) times

• Since we heapify inside a while loop that we do n 
times, the total time for the while loop is 

n*O(log n), or O(n log n)

Heapsort - Analysis
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• Here’s the algorithm again:
heapify the array;

while the array isn’t empty {

remove and replace the root;

reheap the new root node;
}

• We have seen that heapifying takes O(n log n) time

• The while loop takes O(n log n) time

• The total time is therefore O(n log n) + O(n log n)

• Which is equivalent to O(n log n) time

Heapsort - Analysis
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Priority Queue

• Problem:

• Maintain a dynamically changing set S so that every 

element in S has a priority (key) k.

• Allow efficiently reporting the element with maximal 

priority in S.

• Allow the priority of an element in S to be increased.
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• A (max-)priority queue supports the following operations:

• Insert(S, x, k): Insert element x into S and give it priority k.

• Delete(S, x): Delete element x from S.

• Find-Max(S): Report the element with maximal priority in S.

• Delete-Max(S): Report the element with maximal priority in 
S and remove it from S.

• Change-Priority(S, x, k): Change the priority of x to k.

Priority Queue
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• Binary heaps are binary trees that satisfy the following 

heap property:

• For every node v with parent u, let k
v

and k
u

be the 

priorities of the elements stored at v and u. 

• Then k
v

≤ k
u
.

Binary Heap  as  Priority Queue
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• Priority queues support operations:

– Insert, Delete, and Increase-Key

– Find-Max and Delete-Max

• Binary heaps are priority queues that support the 

above operations in O(lg n) time.

• We can sort using a priority queue.

• Heapsort:

– Sorts using the priority-queue idea

– Takes O(n lg n) time (as Mergesort)

– Sorts in place (as Insertion Sort)

Heaps, Priority Queues


