
Bm267 1

BM267 - Introduction to Data

Structures

Ankara University

Computer Engineering Department
Bulent Tugrul

12. Searching and BST

Bm267 2

Searching

Sequential search
The algorithm simply compares successive elements

of a given array or list with a given key until either a

match is encountered (successful search) or the list is

exhausted without finding the a match(unsuccessful

search).

Algorithm Sequential Search(A[0…n-1], Key)

for(int i =0; i < n; i++)

if(A[i] == Key)

return 1;

return 0;

Bm267 3

Searching

• An improvement can be incorporated in sequential

search if the given list or array is sorted: searching

in such list can be stopped as soon as an element

greater than or equal to the search key is

encountered.

• Analysis of sequential search

– Average case: the sequential search compares n/2

element of the list

– Worst case: worst case occurs in two cases, either the

search is unsuccessful or the key is found at the end of

the list. Therefore in these cases sequential search has

to make n comparisons

Bm267 4

Searching

String matching

• String matching problem is searching a string of m
characters called pattern in a given string of n
characters called text. (m <= n)

• To put it more precisely, we want to find i-the
index of the leftmost character of the first matching
substring in the text-such that ti = p0, …,
ti+j= pj,…,ti+m-1 = pm-1.

t0 … ti … ti+j … ti+m-1 … tn-1 text T

p0 … pj … pm-1 pattern P

Bm267 5

Searching

• A brute-force algorithm for the string-matching problem is

quite obvious: align the pattern against the first m

characters of the text and start matching the corresponding

pairs of characters from left to right until either all m pairs

of the characters match or a mismatching pair is

encountered.

• If there is a mismatch, the pattern is shifted one position to

the right and character comparisons are resumed.

Algorithm BruteForceStringMatching(T[0…n-1], P[0…m-1])

for(i =0; i < n-m; i++)

for(j =0; j < m && P[j] == T[i+j]; j++);

if(j == m)

return i;

return –1;

Bm267 6

Searching

N O B O D Y _ N O T I C E D _ H I M

N O T

N O T

N O T

N O T

N O T

N O T

N O T

N O T

Bm267 7

Searching

• Analysis of string matching: in the worst case the
algorithm has to make (n*m) comparisons.

Binary search

• Binary search is an efficient algorithm for searching in a
sorted array. It works comparing a search key with the
array’s middle element a[m]. If they match, the algorithm
stops; Otherwise , the same operation is repeated
recursively for first half of the array if key < a[m] and for
the second half if key > a[m].

key

a[0] … a[m-1] a[m] a[m+1] … a[n-1]

•

Search here if key< a[m] search here if key>a[m]

Bm267 8

Searching

3 14 27 31 39 42 55 70 74 81 85 93 98

0 1 2 3 4 5 6 7 8 9 10 11 12

Searching Key = 70

index

value

iteration 1 l m r

iteration 2 l m r

iteration 3 l,m r

Bm267 9

Searching

Algorithm BinarySearch(A[0…n-1], Key)

l = 0; r = n-1;

while(l <= r){

m = (l+r)/2;

if(K = A[m])

return m;

else if (K < A[m])

r = m-1;

else

l = m+1

}

return –1;

Bm267 10

Searching

Analysis of binary search

The average case analysis of binary search depends

on the key and values in the array.

The worst case occur if the search is unsuccessful. In

this case algorithm has to make:

T(n) = T(n/2) + 1 comparisons

= log2n

