
Bm267 1

BM267 - Introduction to Data

Structures

Ankara University

Computer Engineering Department
Bulent Tugrul

12. Binary Search Tree

Bm267 2

BST

• The basic operations (search, insert, delete)
can be performed in O (logn) time when a
balanced search tree is used.

• Definition: A binary search tree is a binary
tree. A nonempty binary search tree
satisfies the following properties:

1.Every element has a key(or value) and no
two elements have the same key; therefore
all keys are distinct.

2.The keys (if any) in the left subtree of the
root are smaller than the key in the root.

Bm267 3

BST

3. The keys (if any) in the right subtree of the root
are larger than the key in the root.

4. The left and right subtrees of the root are also a
binary search trees.

20 30

2210

15 25

12

5 40

8065

70

60

7

root root
root

Bm267 4

BST

• We can remove the requirement that all elements

in a binary search tree need be distinct keys. Now

we replace smaller in property 2 by smaller than

or equal to.

• The resulting tree is called a binary search tree

with duplicates.

struct TreeNode

{

int data;

struct TreeNode *left;

struct TreeNode *right;

}

Bm267 5

Linked representations of binary search trees.

K

root

B G

A E M

BST

Bm267 6

BST- Searching

• Suppose we wish to search for an element with key k. We
begin at the root. If the root is NULL, the search tree
contains no elements and the search is unsuccessful.

• Otherwise, we compare k with the key in the root. If key is
less than the root, then no element in the right subtree can
have key value k and only left subtree is to be searched.

• If the key is larger than the key in the root, only right
subtree needs to be searched.

• If k equals the key in the root, then the search terminates
successfully.

• The subtrees can be searched similarly.

• The time complexity is O(h) where h is the height of the
tree.

Bm267 7

int tree_search (int key){

struct treenode *p = root;

while(p !=NULL){

if(key < p->data)

p = p->left;

else if (key > p->data)

p = p->right;

else

return 1; }

return 0;}

BST- Searching

Bm267 8

int search_rec(struct treenode *p, int key){

if(p == NULL)

return 0;

if(key == p->data)

return 1;

if (key < p->data)

return search_rec(p->left, key);

else

return search_rec(p->right, key);

}

BST- Searching

Bm267 9

BST- Insertion

• To insert a new element ‘e’ into a binary search
tree, we must first verify that its key is different
from those of existing elements by performing a
search in the tree.

• If the search is unsuccessful, then the element is
inserted at the point the search terminated.

• For instance, to insert an element with key 80 into
tree, we must search for 80.

• This search terminates unsuccessfully, and the last
node examined the one with key 40.

• The new element is inserted as the right child of
this node.

Bm267 10

BST- Insertion
void tree_insert(int key){

struct treenode *p, *pp, *r;

p = root; // search pointer

pp = NULL; //parent of p

while(p){

pp = p;

if(key < p->data)

p = p->left;

else if (key > p->data)

p = p->right;

else

printf(" The key is already in the tree.\n"); }

Bm267 11

BST- Insertion

r = malloc(sizeof(struct treenode *));

r->data = key;

r->left = NULL;

r->right = NULL;

if(root) // tree is not empty {

if(key < pp->data)

pp->left = r;

else

pp->right = r; }

else // insertion into an empty tree

root = r; }

Bm267 12

BST- Deletion

• For deletion we consider three possibilities for the

node p that contains the element to be deleted:

p is a leaf

p has one nonempty subtree

p has two nonempty subtree

• Case 1 is handled by discarding the leaf node.

• To delete 35 from the tree, the left-child field of

its parent is set to NULL and node is discarded.

Bm267 13

30

5 40

2 8035

root

p

pp

pp->left = NULL

BST- Deletion

Bm267 14

• Next consider the case when p has only one nonempty

subtree.

• if p has no parent (i.e. it is the root), node p is discarded and

the root of its single subtree becomes the new search tree root.

30

40

8035

root

p
root = p->right;

40

8035

root

BST- Deletion

Bm267 15

• if p has a parent pp, then we change the pointer

from pp so that it points to p’s only child and then

delete the node p.

• For instance if we want to delete 5, we change the

left-child field of its parent(the node containing

30) to point the node containing the 2.

30

5 40

2 8035

root

p

pp
pp->left = p->left;

BST- Deletion

Bm267 16

BST- Deletion

• Finally, to delete an element that has two

nonempty subtrees, we replace this element with

either the largest element in its left subtree or the

smallest element in its right subtree.

30

5 40

2 8035

root

32

31 33

8560

30

5 60

2 8035

root

32

31 33

85

Bm267 17

30

5 40

2 8035

root

32

31 33

8560

30

5 35

2 80

root

32

31 33 85

BST- Deletion

60

Bm267 18

BST- Tree Min

• An element in binary search tree whose key is the

minimum can always be found by following left

child from the root until a NULL is encountered.

30

5 35

2 80

root

32

31 33 8560

Bm267 19

struct node * tree_min(struct node * n)

{

while(n->left != NULL)

n = n->left;

return n;

}

BST- Tree Min

Bm267 20

BST- Tree Max

• An element in binary search tree whose key is the

maximum can always be found by following right

child from the root until a NULL is encountered.

30

5 35

2 80

root

32

31 33 8560

Bm267 21

struct node * tree_max(struct node * n)

{

while(n->right != NULL)

n = n->right;

return n;

}

BST- Tree Max

Bm267 22

BST- Successor

• The successor of a node ‘x’ is the node with the

smallest key greater than ‘x’.

• If the right subtree of node x is nonempty, then the

successor of x is the leftmost node in the right

subtree. 30

5 35

2 8032

31 33 8560

Bm267 23

BST- Successor

• If the right subtree of node x is empty and x has a

successor y, then y is the lowest ancestor of x

whose left child is also an ancestor of x.

30

5 35

2
8032

7

13

9

x

y

Bm267 24

struct node * tree_succ(struct node * n){

struct node *y;

if(n->right != NULL)

return tree_min(n->right);

y = n->parent;

while(y != NULL && n == y->right)

{

n = y;

y = y->parent;

}

return y;}

BST- Successor

Bm267 25

BST- Analysis

What is the run-time of search, insert, and delete?

• Proportional to the height of the tree

What is the height of a tree with n nodes?

• Worst-Case: O(n) in a linear tree

• Best-Case: O(log n) in a complete binary tree

30

5 40

2 803520

2

5

7

20

40

Bm267 Fall 2005 26

• References: Jeffrey S. Childs

Clarion University of PA

