
Bm267 1

BM267 - Introduction to Data

Structures

Ankara University

Computer Engineering Department
Bulent Tugrul

14. Hashing

Bm267 2

Hashing

• A dictionary is an abstract type. A set of

operations searching, insertion, and deletion are

defined on its element.

• The elements of this set can be of numbers,

characters, character strings and so on.

• Typically, tables have several fields, each

responsible for keeping a particular type of

information about an entity.

• For example, a student record may contain fields

for student’s ID, name, date of birth and major and

so on.

Bm267 3

Hashing

• At least one field called key is used for

identifying entities (the student’s ID).

• Hashing is based on the idea of distributing n keys

among a one-dimensional array H[0…m-1] called

a hash table.

• The distribution is done by computing the value of

some predefined functions h called hash function.

• This function assigns an integer between 0 and

m-1, called hash address, to a key.

Bm267 4

Hashing

0

m–1

h(k1)

h(k4)

h(k2)=h(k5)

h(k3)

U
(universe of keys)

K (current keys)

k1

k2

k3

k5

k4

collision

h()

Bm267 5

Hashing

• The hash function depends on the key type.

• For example, if keys are positive integers, hash

function can be of the form h(k)= k mod m.

This function assures that the result is always

between 0 and m-1.

• In general, hash function needs to satisfy two

requirement:

A hash function needs to distribute keys among the

cells of the hash table as evenly as possible. (Because

of this requirement the value of m is usually chosen to

be prime.)

 A hash function has to be easy to compute

Bm267 Fall 2005 6

Hashing

• If we choose a hash table’s size m to be smaller than
the number of keys n, we will get collisions (two
(or more) keys being hashed into same cell of the
hash table).

• In fact, in the worst case, all the keys could be
hashed to the same cell of the hash table.

• With an appropriately chosen size of the hash table
and a good hash function, this situation will happen
rarely.

• Still, every hashing scheme must have a collision
resolution mechanism.

• There are two version of hashing: open hashing
(separate chaining) and closed hashing (open
addressing)

Bm267 7

• The goal of the hash function is to distribute the

keys in an apparently in a random way to prevent

mapping different keys to the same table index.

• Total prevention is not possible in practice.

• When h(x) = h(y) for x ≠ y, this is called a collision

• Collisions occur when different elements are

mapped to the same cell.

Collisions

Bm267 8

• As the number of elements in the table increases, the

likelihood of a collision increases - so make the table

as large as possible.

• If the table size is 100, and all the hashed keys are

divisible by 10, there will be many collisions!

• Particularly bad if table size is a power of a small integer

such as 2 or 10

• Therefore, make the table size a prime number

Collisions

Bm267 9

• Open Hashing (Separate chaining): Create an array

of linked list, so that the item can be inserted into the

linked list if collision occurs.

• Closed Hashing (Open Addressing): Search the array

in some systematic way for an empty cell and insert

the new item there if collision occurs.

Collisions handling

Bm267 10

Open Hashing (Separate Chaining)

• In open hashing, keys are stored in linked

list attached to cells of a hash table.

A S E R C H I N G X M P L

0 2 0 4 4 4 2 2 1 2 4 3 3

A0

1

2

3

4

A0

1

2

3

4

S

keys

hash value

Bm267 11

Open Hashing (Separate Chaining)

E

X

G

A

N SI

L P

M H C R

0

1

2

3

4

0

1

2

3

4

S

E A

Bm267 12

Open Hashing (Separate Chaining)

• Consider , as an example, the following list of

words:

A, FOOL, AND, HIS MONEY, ARE, SOON, PARTED

• As a hash function, we will use the simple

function for strings, that is we will add the

positions of a word’s letters in the alphabet and

compute the sum’s remainder after division by 13.

• We start with an empty table.

• The first key is the word “A”; its hash is

h(A) = 1 mod 13 = 1

A

Bm267 13

Open Hashing (Separate Chaining)
• The second key –the word FOOL; its hash is

h(FOOL) = (6 +15 +15+12) mod 13 = 9

A

0 1 2 3 4 5 6 7 8 9 10 11 12

FOOL

A
FOOL

0 1 2 3 4 5 6 7 8 9 10 11 12

AND SOON

ARE

PARTED

Bm267 14

Open Hashing (Separate Chaining)

• A collision occurred at position 11, because h(ARE) =

(1+8+5) mod 13 = 11 and h(SOON) = (19+15+15+14) mod

13 = 11.

Searching

•Apply same procedure to search key that was used for

creating the table.

•If we want to search a key “KID” in the hash table, we first

compute the value of the same hash function for the key:

h(KID) = 11.

•Since the list attached to cell 11 is not empty, so the list may

contain the key. After comparing the string KID first with

SOON and then ARE, we end up with an unsuccessful search.

Bm267 15

Open Hashing (Separate Chaining)

• The efficiency of searching depends on the length
of the list.

• The length of the list depends on the table size
and the quality of the hash function.

• If the hash function distributes n keys among m
cells of the hash table evenly, each list will be
about n/m keys long.

• The ratio  = n/m called the load factor of the
hash table.

• The average number of pointers inspected in
successful search will be 1 + /2. In unsuccessful
search, it will be .

Bm267 16

Open Hashing (Separate Chaining)

• The other two dictionary operations –

insertion and deletion are almost identical to

searching.

• Insertion are done to the front or end of the

list.

• Deletion is performed by searching for a

key to be deleted and then removing it from

the its list.

Bm267 17

Closed Hashing(Open Addressing)

• In closed hashing, all keys are stored in the hash
table itself without the use of linked list.

• This implies that the table size m must be at least
as large as the number of keys n.

• Different strategies can be employed for collision
resolution. The simplest one – called linear
probing- checks the cell following the one where
collision occurs. If that cell is empty, the new key
is saved there, if not the first empty cell is
searched. If the end of the table is reached, the
search starts from the beginning of the table. The
table is treated as a circular array.

Bm267 18

Linear Probing

keys A FOOL AND HIS MONEY ARE SOON PARTED

hash ad 1 9 6 10 7 11 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

A

A FOOL

A AND FOOL

A AND FOOL HIS

A AND MONEY FOOL HIS

A AND MONEY FOOL HIS ARE

A AND MONEY FOOL HIS ARE SOON

PARTED A AND MONEY FOOL HIS ARE SOON

Bm267 19

Linear Probing

• To search for a given key k, we start by computing h(k)

where h is the hash function used in the table’s

construction.

• If the cell is empty the search is unsuccessful.

• If the cell is not empty, we must compare k with the cell: if

they are equal, we have found a matching key; if they are

not we compare k with a key in the next cell and continue

in this manner until either we encounter a matching key or

an empty cell (unsuccessful search)

• For example, if we search the word LIT in the table, first

we need to calculate the hash value. We will get

h(LIT) = (12 + 9 +20) mod 13 = 2 , since cell is empty

the search is unsuccessful. We can stop immediately

Bm267 20

Linear Probing

• However if we search for KID with h(KID) = (11+9+4)

mod 13 = 11, we will compare KID with ARE, SOON,

PARTED, and, A before we can declare the search is

unsuccessful.

• While the search and insertion operations are

straightforward, deletion is not.

• For example, if we simply delete the key ARE from the

table, we would unable to to find key SOON afterward.

• After computing h(SOON) = 11, the algorithm would find

this location empty and report the search is unsuccessful.

• The solution is to mark previously occupied locations by a

special symbol to distinguish them from locations that

have not been occupied.

Bm267 21

Linear Probing

•Linear probing creates clusters. Clusters are bad news in

hashing because they make operations less efficient.

•Several other collision resolution strategies have been

suggested; Quadratic and Double hashing.

•Quadratic probing uses a hash function of the form

h(k, i)=(h’(k) + c1i + c2i
2) mod m

where h’ is an auxiliary hash function, c1 and c2 are auxiliary

constants, and i = 0,1,…, m-1.

Bm267 22

Double Hashing

• Double Hashing is one of the best methods available for

open addressing.

• Double hashing uses a hash function of the form

h(k,i) = (h1(k) + ih2(k)) mod m

where h1 and h2 are auxiliary hash functions.

• The initial probe is to position h1(k); successive probe

positions are offset from previous positions by the amount

h2(k) mod m.

• The h2(k) must be relatively prime to the hash-table size m.

• A convenient way to ensure this condition, let m be prime

and to design h2 so that it always returns a positive integer

less than m.

Bm267 23

Double Hashing

•For example, we could choose m prime and

let

h1(k) = k mod m,

h2(k) = 1 + (k mod m’)

where m’ is chosen to be slightly less than (say m-

1).

•If k =123456, m = 701 and m’ =700, we have

h1(k) = 80 and h2(k) =257 so the first probe is

at position 80, and then every 257th slot is

examined.

Bm267 24

Double Hashing

7292146979

1211109876543210

h1(k) = k mod 13

h2(k) = 1 + (k mod 11)

