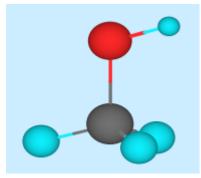
PHA284

Organic Chemistry II

Ankara University Faculty of Pharmacy Department of Pharmaceutical Chemistry



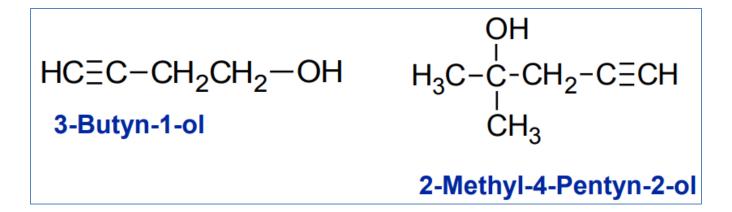
ALCOHOLS

The word alcohol immediately brings to mind ethanol, the intoxicating compound in wine and beer.

The functional group of an alcohol is an -OH group bonded to an sp³ hybridized carbon

Methanol

Nomenclature

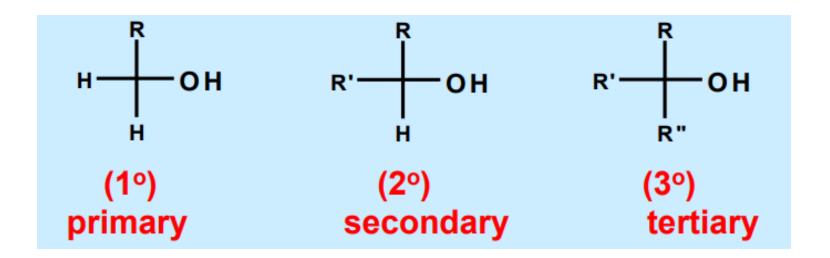

CH₃CH₂OH

³ ² ¹ CH₃CH₂CH₂OH

methanol

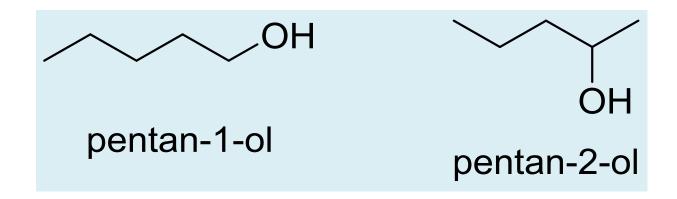
ethanol

1-propanol (methyl alcohol) (ethyl alcohol) (n-propyl alcohol)


Nomenclature

- OH functional group is named as a **hydroxy** substituent when it appears on a structure with a **higher priority functional group** such as acids, esters, aldehydes and ketones.

Classification of Alcohols


Alcohols are further classified as:

- Methyl alcohol (CH₃OH)
- primary (1°) alcohol
- secondary (2°) alcohol
- tertiary (3°) alcohol

Isomerism

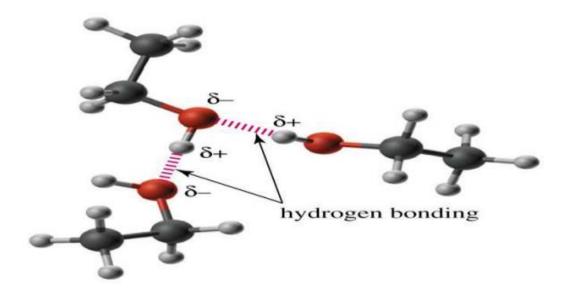
n-Pentyl alcohol and sec-pentyl alcohol are constitutional isomers. They have the same molecular formula ($C_5H_{12}O$) but have different structures.

Isomerism

- Compounds with atoms connected in the same order but which differ in three-dimensional orientation, are stereoisomers.
- The terms "cis" and "trans" should be used to specify stereoisomeric • ring structures.

cis-Cyclopentane-1,2-diol

Physical Properties


PHYSICAL STATES OF ALCOHOLS

- simple aliphatic alcohols \rightarrow **liquids** at room temperature.
- highly branched alcohols and alcohols with **twelve or more** carbon atoms \rightarrow **solids**.

Physical Properties

BOILING POINTS

	C₂H₅OH	CH ₃ CH ₂ CH ₃	CH ₃ CI
Relative molecular mass:	46	44	50.5
Boiling point:	46 78°C	-42°C	-24°C

Physical Properties

SOLUBILITY OF ALCOHOLS IN WATER

Alcohols are more soluble in water than hydrocarbons.

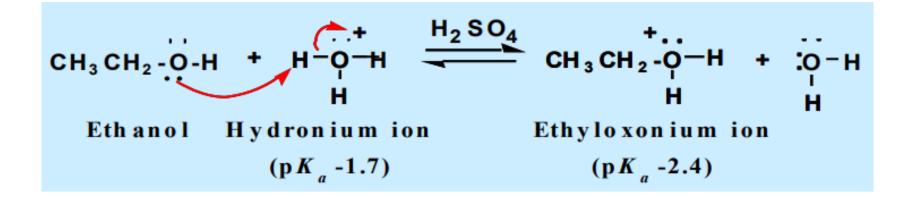
Higher alcohols are insoluble in water. - alcohol contains a polar end (-OH group) called 'hydrophilic' and a non-polar end (the alkyl group) called 'hydrophobic'.

- the water solubility decreases as the alkyl group becomes larger.

Acidity of Alcohols

• Most alcohols are about the same or slightly weaker acids than water.

$$CH_{3}O-H + O-H - CH_{3}O + H-O-H + H$$

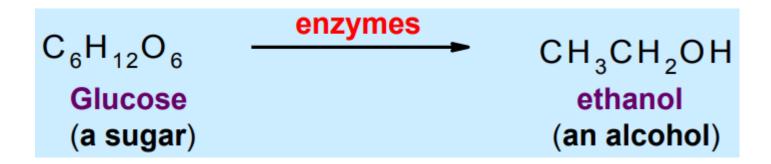

$$K_{a} = \frac{[CH_{3}O][H_{3}O^{+}]}{[CH_{3}OH]} = 3.2 \times 10^{-16}$$

$$PK_{a} = 15.5$$

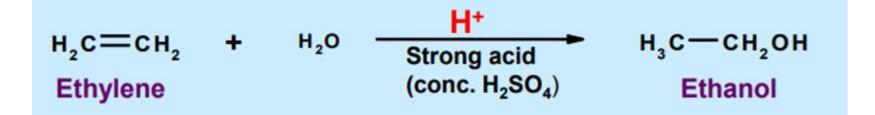
$$- PKa = -\log Ka$$

Basicity of Alcohols

Alcohols can function as both very weak acids and weak bases.

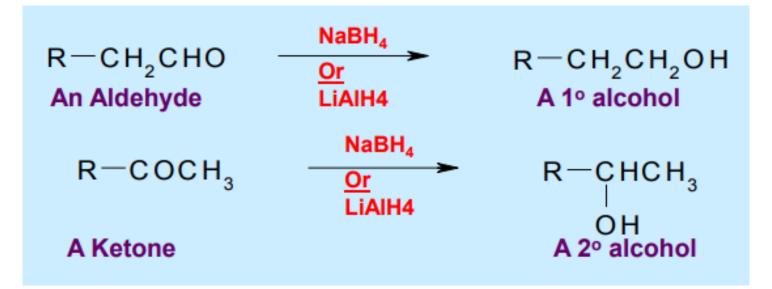


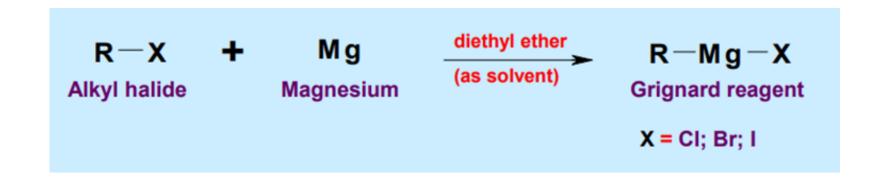
Methanol is manufactured from carbon monoxide and hydrogen.


$$CO + 2H_2 \xrightarrow{ZnO/Cr_2O_3} CH_3OH$$

$$400^{\circ}C, 150 \text{ atm}$$

i. Fermentation of carbohydrates:


ii. Hydration of alkenes:


iii. Nucleophilic Substitution Reactions:

CH₃CH₂CH₂Br + NaOH_{aq} <u>heat</u> → CH₃CH₂CH₂OH + NaBr <u>1-Bromopropane</u> (a 1° alkyl halide) (a 1° alcohol)

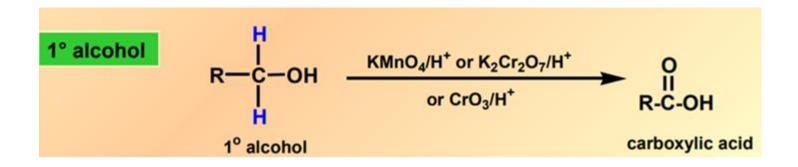
iv. Reduction of Aldehydes and Ketones:

v. Grignard addition to Aldehydes and Ketones:

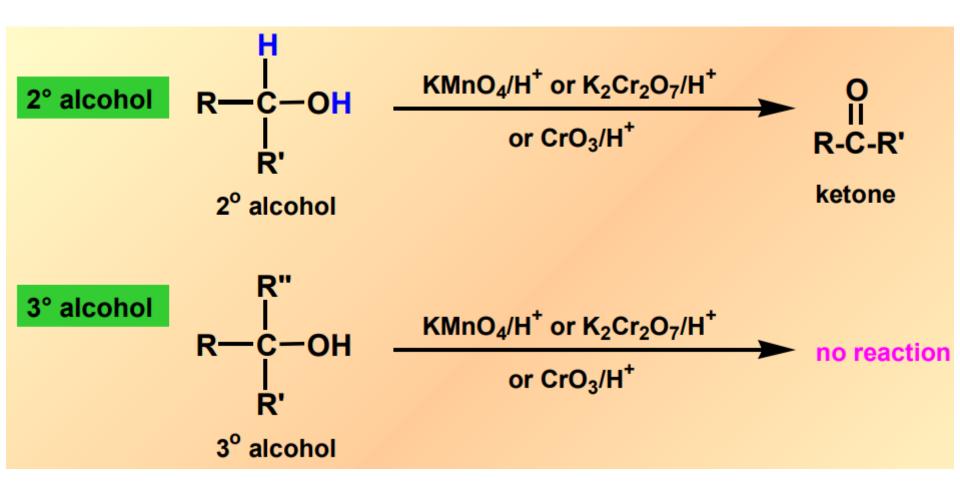
Grignard Reagents react with formaldehyde to give a 1° alcohol.

Grignard Reagents react with all other aldehydes to give 2° alcohols.

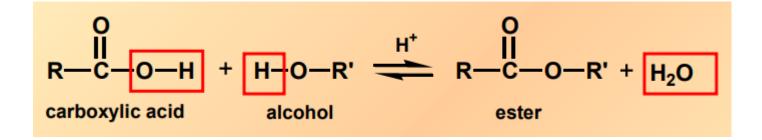
Grignard Reagents react with ketones to give 3° alcohols


vi. Ester Hydrolysis:

$$R-C'O + R'-OH \longrightarrow R-C'O + HOH$$

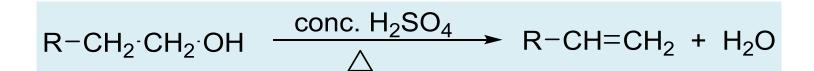

Reaction with Sodium

$2R-O-H + 2Na \longrightarrow 2R-O-Na^+ + H_2$


Oxidation

Oxidation

Esterification



Halogenation reactions

 $R-OH + H-X \rightarrow R-X + H_2O$

$\textbf{R-OH + SOCl}_2 \rightarrow \textbf{R-CI + SO}_2 + \textbf{HCI}$

Dehydration

$$CH_3-CH_2-OH \xrightarrow{conc. H_2SO_4} CH_2=CH_2 + H_2O$$

Formation of ether (Williamson ether synthesis)

 $R-O^{\cdot}$ + R'-X → R-O-R' + X[·] alkoxide (R' must be primary)

References

- Organic Chemistry 11e, T.W. Graham Solomons, Craig B. Fryhle, Scott A. Snyder, John Wiley & Sons, Inc., 2014, ISBN 978-1-118-13357-6 (cloth) Binder-ready version ISBN 978-1-118-14739-9
- Organic Chemistry: A Short Course, 13th Ed., D.J. Hart, C.M. Hadad, L.E. Craine, H. Hart, Brooks/Cole, Cengage Learning, 2012, ISBN-13: 978-1-111-42556-2
- Organic Chemistry, 6th Ed., L. G. Wade, Pearson Education, Inc., 2006, ISBN 0-13-147871-0
- Organic Chemistry, 2nd Ed., Jonathan Clayden, Nick Greeves, and Stuart Warren,, Oxford University Press, 2012, ISBN: 9780199270293
- Organic Chemistry, Mukherjee, S.M., et al., New Age International Ltd, 2008. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/ankara/detail.action?docID=3017383.