Lecture 1: Preliminaries

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

э

▶ < ∃ ▶

Relation

Let A and B be sets. The set $A \times B = \{(a, b) \mid a \in A, b \in B\}$ is the cartesian product of A and B.

Definition (Relation)

A **relation** between sets A and B is a subset R of $A \times B$.

- If $(a, b) \in R$, then we say that "*a* is related to *b*" and denote it as $a\mathbf{R}b$.
- Any relation between a set S to S is called a relation on S.

Definition (Equivalence relation)

A relation **R** on a set S is called an **equivalence relation** if the followings are satisfied for all $x, y, z \in S$:

- **O Reflexive:** *xRx*.
- **2** Symmetric: If *xRy*, then *yRx*.
- **Transitive:** If xRy and yRz, then xRz.

A **partition** of a set S is a collection of nonempty subsets of S such that every element of S is in exactly one of the subsets. These subsets are called as the **cells** of the partition.

Theorem

Let S be a nonempty set and let \sim be an equivalence relation on S. Then \sim yields a partition of S where

$$\overline{a} = \{x \in S \mid x \sim a\}.$$

Also each partition of S gives rise to an equivalence relation \sim on S where

 $a \sim b \Leftrightarrow a$ and b are in the same cell of partition.

Each cell in the partition arising from an equivalence relation is an equivalence class.

Functions

If every element of A is related to exactly one element of B, then we have the relation, called as **function**.

Definition

Let A and B be nonempty sets. f is called a **function** from A to B, denoted $f : A \rightarrow B$, if f is a relation from A to B with the property that every element a in A is the first coordinate of exactly one ordered pair in f. That is,

For each element a ∈ A, there is an element b ∈ B such that (a, b) ∈ f. (∀a ∈ A, ∃b ∈ B such that f (a) = b)

 $\text{ If } (a, b), (a, c) \in f, \text{ then } b = c. \\ (\text{If } f(a) = b \text{ and } f(a) = c \Rightarrow b = c) \\ \end{cases}$

Example: Let $A = \{1, 2, 3\}$, $B = \{a, b, c, d\}$. $f = \{(1, b), (2, d), (3, b)\}$ is a function $g = \{(1, a), (2, c), (3, b), (2, a)\}$ is not a function.

Functions

Let $f : A \rightarrow B$ be a function

- A is called the **domain** of f and B is called the **codomain** of f.
- The range of f is $f(A) = \{f(a) \mid a \in A\}$.
- f is called **onto** if ∀b ∈ B, ∃a ∈ A such that f (a) = b.
 f : A → B ⇔ f (A) = B

•
$$f: A \xrightarrow{1-1} B$$
 if $f(a) = f(b)$ implies $a = b$ for all $a, b \in A$.

Let $f : A \rightarrow B$ be a function and $D \subseteq A, E \subseteq B$.

f (D) = {f (a) | a ∈ D} ⊆ B is called the range of f under D.
f⁻¹ (D) = {a | f (a) ∈ E} ⊆ A is called the inverse image (preimage) of f under E. The set f⁻¹ ({b}) = {a ∈ A | f (a) = b} ⊆ A

イロト イ団ト イヨト イヨト 三日

For a relation $R: A \rightarrow B$, the inverse relation $R^{-1}: B \rightarrow A$ is defined by

$$R^{-1} = \{(b, a) \mid (a, b) \in R\}.$$

Every function $f : A \to B$ is also a relation from A to B , and so there is an inverse relation f^{-1} from B to A.

We need the following conditions for the inverse relation f^{-1} to be a function.

∀b ∈ B, ∃a ∈ A such that (b, a) ∈ f⁻¹. (This implies f must be onto)
If (b, a), (b, c) ∈ f⁻¹, then a = c. (This implies f must be 1-1)

Thus if $f : A \to B$ be a 1-1 and onto function, then $f^{-1} : B \to A$ is referred to as the **inverse function** of f.

イロト 不得下 イヨト イヨト 二日

Remarks:

1. Let A and B be **finite** nonempty sets.

•
$$f : A \xrightarrow{1-1} B \Rightarrow |A| \le |B|$$

• $f : A \xrightarrow{onto} B \Rightarrow |A| \ge |B|$
• $f : A \xrightarrow{1-1,onto} B \Rightarrow |A| = |B|$

2. Let A and B be **finite** nonempty sets and |A| = |B|. Then

$$f \text{ is } 1 - 1 \Leftrightarrow f \text{ is onto.}$$

Image: Image:

- < E ≻ < E ≻

æ

Definition

A **binary operation** * on a set S is a function from $S \times S$ to S.

$$*: S \times S \longrightarrow S_{(a,b)} \longrightarrow a*b$$

For each $(a, b) \in S \times S$, we denote the element *((a, b)) of S by a * b.

Let * be a binary operation on S and let H ⊆ S. Then the subset H is closed under * if a * b for all a, b ∈ H.

Definition

Let denote (S, *) consists of a nonempty set S and a binary operation * on S. We refer to (S, *) as an **algebraic structure.**

Properties of an algebraic structure (S, *):

- Associative: a * (b * c) = (a * b) * c for all $a, b, c \in S$.
- **2** Identity element: $\exists e \in S$ such that a * e = e * a = a for all $a \in S$.
- 3 Inverse element: For each $a \in S$, $\exists a' \in S$ such that a * a' = a' * a = e.
- Commutative: a * b = b * a for all $a, b \in S$.

Congruence Modulo n

Let $n \in \mathbb{Z}^+$ and $x, y \in \mathbb{Z}$. The relation " $\equiv \pmod{n}$ " defined by $x \equiv y \pmod{n} \Leftrightarrow n \mid x - y$

is an equivalence relation on \mathbb{Z}^+ and called as **congruence modulo** *n*. The equivalence classes are called as **residue classes modulo** *n* (integers modulo *n*). For $x \in \mathbb{Z}$,

$$\overline{x} = \{ y \in \mathbb{Z} \mid y \equiv x \pmod{n} \}$$

= $\{ y \in \mathbb{Z} \mid n \mid y - x \}$
= $\{ y \in \mathbb{Z} \mid y - x = nk, \exists k \in \mathbb{Z} \}$
= $\{ x + nk \mid k \in \mathbb{Z} \}.$

The set of all congruence classes is denoted by

$$\mathbb{Z}_n := \left\{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\right\}.$$

and called as the set of residue classes modulo $n \mapsto \langle \sigma \rangle \langle \sigma \rangle \langle \sigma \rangle$

Congruence Modulo n

• The operations $+_n$ and \cdot_n on \mathbb{Z}_n are defined by

$$\overline{a} +_n \overline{b} : = \overline{a + b}$$

 $\overline{a} \cdot_n \overline{b} : = \overline{ab}$

ā ∈ Z_n has multiplicative inverse modulo n ⇔ gcd (a, n) = 1.
Z^{*}_n = {ā | gcd (a, n) = 1} is called the prime residue classes. |Z^{*}_n| = φ (n) where φ is Euler-phi function and defined as the number of positive integers a ≤ n such that gcd (a, n) = 1.