# Lecture 1: Preliminaries 

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

## Relation

Let $A$ and $B$ be sets. The set $A \times B=\{(a, b) \mid a \in A, b \in B\}$ is the cartesian product of $A$ and $B$.

## Definition (Relation)

A relation between sets $A$ and $B$ is a subset $R$ of $A \times B$.

- If $(a, b) \in R$, then we say that " $a$ is related to $b$ " and denote it as $a \mathbf{R} b$.
- Any relation between a set $S$ to $S$ is called a relation on $S$.


## Definition (Equivalence relation)

A relation $\mathbf{R}$ on a set $S$ is called an equivalence relation if the followings are satisfied for all $x, y, z \in S$ :
(1) Reflexive: $x R x$.
(2) Symmetric: If $x R y$, then $y R x$.
(3) Transitive: If $x R y$ and $y R z$, then $x R z$.

## Partitions and Equivalence Relations

A partition of a set $S$ is a collection of nonempty subsets of $S$ such that every element of $S$ is in exactly one of the subsets. These subsets are called as the cells of the partition.

## Theorem

Let $S$ be a nonempty set and let $\sim$ be an equivalence relation on $S$. Then $\sim$ yields a partition of $S$ where

$$
\bar{a}=\{x \in S \mid x \sim a\} .
$$

Also each partition of $S$ gives rise to an equivalence relation $\sim$ on $S$ where

$$
a \sim b \Leftrightarrow a \text { and } b \text { are in the same cell of partition. }
$$

Each cell in the partition arising from an equivalence relation is an equivalence class.

## Functions

If every element of $A$ is related to exactly one element of $B$, then we have the relation, called as function.

## Definition

Let $A$ and $B$ be nonempty sets. $f$ is called a function from $A$ to $B$, denoted $f: A \rightarrow B$, if $f$ is a relation from $A$ to $B$ with the property that every element $a$ in $A$ is the first coordinate of exactly one ordered pair in $f$. That is,
(1) For each element $a \in A$, there is an element $b \in B$ such that $(a, b) \in f .(\forall a \in A, \exists b \in B$ such that $f(a)=b)$
(2) If $(a, b),(a, c) \in f$, then $b=c$.
(If $f(a)=b$ and $f(a)=c \Rightarrow b=c$ )
Example: Let $A=\{1,2,3\}, B=\{a, b, c, d\}$.
$f=\{(1, b),(2, d),(3, b)\}$ is a function
$g=\{(1, a),(\mathbf{2}, c),(3, b),(\mathbf{2}, a)\}$ is not a function.

## Functions

Let $f: A \rightarrow B$ be a function

- $A$ is called the domain of $f$ and $B$ is called the codomain of $f$.
- The range of $f$ is $f(A)=\{f(a) \mid a \in A\}$.
- f is called onto if $\forall b \in B, \exists a \in A$ such that $f(a)=b$.
$f: A \xrightarrow{\text { onto }} B \Leftrightarrow f(A)=B$
- $f: A \xrightarrow{1-1} B$ if $f(a)=f(b)$ implies $a=b$ for all $a, b \in A$.

Let $f: A \rightarrow B$ be a function and $D \subseteq A, E \subseteq B$.

- $f(D)=\{f(a) \mid a \in D\} \subseteq B$ is called the range of $f$ under $D$.
- $f^{-1}(D)=\{a \mid f(a) \in E\} \subseteq A$ is called the inverse image (preimage) of $f$ under $E$.
The set $f^{-1}(\{b\})=\{a \in A \mid f(a)=b\} \subseteq A$


## Functions

For a relation $R: A \rightarrow B$, the inverse relation $R^{-1}: B \rightarrow A$ is defined by

$$
R^{-1}=\{(b, a) \mid(a, b) \in R\}
$$

Every function $f: A \rightarrow B$ is also a relation from $A$ to $B$, and so there is an inverse relation $f^{-1}$ from $B$ to $A$.

We need the following conditions for the inverse relation $f^{-1}$ to be a function.
(1) $\forall b \in B, \exists a \in A$ such that $(b, a) \in f^{-1}$. (This implies $f$ must be onto)
(2) If $(b, a),(b, c) \in f^{-1}$, then $a=c$. (This implies $f$ must be 1-1)

Thus if $f: A \rightarrow B$ be a $1-1$ and onto function, then $f^{-1}: B \rightarrow A$ is referred to as the inverse function of $f$.

## Functions

## Remarks:

1. Let $A$ and $B$ be finite nonempty sets.

- $f: A \xrightarrow{1-1} B \Rightarrow|A| \leq|B|$
- $f: A \xrightarrow{\text { onto }} B \Rightarrow|A| \geq|B|$
- $f: A \xrightarrow{1-1, \text { onto }} B \Rightarrow|A|=|B|$

2. Let $A$ and $B$ be finite nonempty sets and $|A|=|B|$. Then

$$
f \text { is } 1-1 \Leftrightarrow f \text { is onto. }
$$

## Binary Operations

## Definition

A binary operation $*$ on a set $S$ is a function from $S \times S$ to $S$.

$$
*: \quad S \times S \quad \longrightarrow S_{(a, b)} \longrightarrow a * b
$$

For each $(a, b) \in S \times S$, we denote the element $*((a, b))$ of $S$ by $a * b$.

- Let $*$ be a binary operation on $S$ and let $H \subseteq S$. Then the subset $H$ is closed under $*$ if $a * b$ for all $a, b \in H$.


## Binary Operations

## Definition

Let denote $(S, *)$ consists of a nonempty set $S$ and a binary operation $*$ on $S$. We refer to $(S, *)$ as an algebraic structure.

Properties of an algebraic structure $(S, *)$ :
(1) Associative: $a *(b * c)=(a * b) * c$ for all $a, b, c \in S$.
(2) Identity element: $\exists e \in S$ such that $a * e=e * a=a$ for all $a \in S$.
(3) Inverse element: For each $a \in S, \exists a^{\prime} \in S$ such that $a * a^{\prime}=a^{\prime} * a=e$.
(9) Commutative: $a * b=b * a$ for all $a, b \in S$.

## Congruence Modulo n

Let $n \in \mathbb{Z}^{+}$and $x, y \in \mathbb{Z}$. The relation " $\equiv(\bmod n)$ " defined by

$$
x \equiv y(\bmod n) \Leftrightarrow n \mid x-y
$$

is an equivalence relation on $\mathbb{Z}^{+}$and called as congruence modulo $n$. The equivalence classes are called as residue classes modulo $n$ (integers modulo $n$ ).
For $x \in \mathbb{Z}$,

$$
\begin{aligned}
\bar{x} & =\{y \in \mathbb{Z} \mid y \equiv x(\bmod n)\} \\
& =\{y \in \mathbb{Z}|n| y-x\} \\
& =\{y \in \mathbb{Z} \mid y-x=n k, \exists k \in \mathbb{Z}\} \\
& =\{x+n k \mid k \in \mathbb{Z}\} .
\end{aligned}
$$

The set of all congruence classes is denoted by

$$
\mathbb{Z}_{n}:=\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}\}
$$

and called as the set of residue classes modulo $n$.

## Congruence Modulo n

- The operations $+_{n}$ and ${ }_{n}$ on $\mathbb{Z}_{n}$ are defined by

$$
\begin{aligned}
\bar{a}+{ }_{n} \bar{b}: & =\overline{a+b} \\
\bar{a} \cdot{ }_{n} \bar{b}: & =\overline{a b}
\end{aligned}
$$

- $\bar{a} \in \mathbb{Z}_{n}$ has multiplicative inverse modulo $n \Leftrightarrow \operatorname{gcd}(a, n)=1$.
- $\mathbb{Z}_{n}^{\star}=\{\bar{a} \mid \operatorname{gcd}(a, n)=1\}$ is called the prime residue classes. $\left|\mathbb{Z}_{n}^{\star}\right|=\phi(n)$ where $\phi$ is Euler-phi function and defined as the number of positive integers $a \leq n$ such that $\operatorname{gcd}(a, n)=1$.
(1) $\phi(p)=p-1$
(2) $\phi\left(p^{r}\right)=p^{r}-p^{r-1}=p^{r}\left(1-\frac{1}{p}\right)$
(3) If $\operatorname{gcd}(m, n)=1$, then $\phi(m n)=\phi(m) \phi(n)$
(9) If $m=p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{k}^{r_{k}}$, then

$$
\begin{aligned}
\phi(m) & =\phi\left(p_{1}^{r_{1}}\right) \phi^{n}\left(p_{2}^{r_{2}}\right) \ldots \phi\left(p_{k}^{r_{k}}\right) \\
& =p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{k}^{r_{k}}\left(1-\frac{1}{p_{1}}\right)^{\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right) .}
\end{aligned}
$$

- $\mathbb{Z}_{p}^{\star}=\mathbb{Z}_{p}-\{\overline{0}\},\left|\mathbb{Z}_{p}^{\star}\right|=\phi(p)=p-1$.

