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Division rings and Fields

Definition

A ring with unity is called a division ring (skew-field) if every nonzero
element of R is a unit. A commutative division ring R is called a field.

A ring R is a division ring< (R*,.) is a group.
A ring R is a field< (R*,.) is a commutative group.

Examples:

1. Z is not a field. Since the only invertible elements are 1 and —1.
2. R, Q, and C are fields.

3. ZJi] is not a field.

4. Q[i] is a field.
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Division rings and Fields

5. Let H ={ag+ a1/ + azj + ask | a9, a1, a2, a3 € R} be a set of real
quaternions. H is a ring with the operations quaternion addition and
quaternion multiplication that are defined as:

(a0 + a1i + axj + ask) + (bo + bii + baj + bsk)
= (ap+bo)+ (a1 +b1)i+(ax+b2)j+ (a3+b3)k

(ao + a1i + axj + azk) x (bo + b1i + byj + bsk)
= (agby — a1b1 — axby — a3b3)

+ (a1by + axby + azby — aghs) i

+ (a1b3 + a3by + agby — axbs) j

+ (a1bs + agby + axbs — a3by) k.

The ring (H, +, X ), which is called the quaternion ring, is a division ring.
Note that (IH, +, x) is not a field, since (H, 4, x) is not commutative.
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Zero Divisor

Definition

An element Og # a € R is called a zero divisor if there exists Og # b € R
such that either ab = 0r or ba = Og. A ring R has no zero divisors if for
all a,b € R,ab = 0g implies a =0 or b = 0.

We do not call the element O a zero divisor. An element can not be a
zero divisor and a unit simultaneously.

Examples:

1. Z is a ring without zero divisors.

2. M (Z) has zero divisors. For example, [ 10 } , [ 00 ] are zero
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3. Zg has zero divisors. In particular, 2,3, 4 are zero divisors in Zg.
4. The subring {0,2,4,6} < Zg has zero divisors.
5. The subring {6, 5,1} < Z¢ has no zero divisors.
6. All nonzero nilpotent elements are zero divisors:
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Remark:

@ Every nonzero element in a finite commutative ring with unity is
either a unit or a zero divisor. Therefore, in Z, the zero divisors are
precisely those nonzero elements that are not relatively prime to n.

e If R is a ring without zero divisors, then every subring of R has no
zero divisor also. But if a ring R has zero divisors, then a subring of R
may have zero divisors or not. In Example 5, Zg has zero divisors but
its subring {6, Q,Z} has no zero divisors.
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Integral Domain

Definition
Let R be a commutative ring with unity. R is called an integral domain if
R has no zero divisors.

Examples:

1. Z is an integral domain.

2. My (Z) is not an integral domain.

3. Z, is an integral domain< n is a prime.

4. Z[i] is an integral domain.

5. Z X Z is not an integral domain, since it has zero divisors;
(1,

0)(0,1) = (0,0).

The cancellation laws hold in a ring R < R has no zero divisors. \
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Integral Domain and Fields

@ Every field is an integral domain.

@ Every finite integral domain is a field.

For prime p, Z, is a field.

All idempotent elements of an integral domain D are Op or 1p.
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Integral Domain and Fields

Remark:

@ There is an integral domain with n elements < n is a power of a
prime number.

@ Let D be a finite integral domain, with |[D| = n. Then D is a finite
field, and we must have n = p¥, with prime p and k € Z*.

Conversely, for any prime power p¥, there is an integral domain Fpx.

Example: There is not any integral domain with 6 elements. There is an
integral domain with 4 elements.
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Subfields

Definition

Let (F,+,.) be a field and K C F. (K, +,.) is called a subfield of F if K
is a field with the operations of F.

Let (F,+,.) be a field and K C F.

K is a subfield of F & (i) K* # @
(iVa,be K, a—beK
(iii)VYa,b e K, abe K
(iv) x € K* = x71 € K*

Examples:

1. Q is a subfield of R, R is a subfield of C.
2. Z[i] is not a subfield of C.

3. QJi] is a subfield of C.
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