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Ring Embeddings

Definition

A ring R is said to be embedded in a ring S if there exists a
monomorphism of R into S.

From this definition, any ring R can be embedded in a ring S if there exist
a subring of S which is isomorphic to R, i.e., R~ f (R) < S.

Any ring R can be embedded in a ring S with identity such that R is an
ideal of S.
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The Field of Quotients of an Integral Domain

Motivated by the construction of Q from Z, here we show that any
integral domain D can be embedded in a field F. In particular, every
element of F can be written as a quotient of elements of D. The field F
will be called as a field of quotients (field of fractions) of an integral
domain D.

Any integral domain D can be embedded in a field F.

Proof: The proof strategy can be given in the following 4 steps:

© Determine the elements of F by using elements of D.
@ Define the binary operations 4+ and . on F.

@ Check the field axioms for (F, +,.)

@ Show that D can be embedded in F.
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The Field of Quotients of an Integral Domain

(1) Let D be an integral domain.

@ Then
DxD={(ab)|abeD}.

o Consider the subset
S=DxD"={(ab)|abeD b0}
e For (a,b),(c,d) €8S,
(a,b) ~ (c,d) & ad = be.

@ The equivalence class a/b:= (a,b) = {(c,d) | (¢, d) ~ (a, b)}.

F=1{a/b|(ab)eS}.
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The Field of Quotients of an Integral Domain

(2) For a/b,c/d € F,

a/b+c/d : = (ad+ bc) /bd
a/b.c/d : = ac/bd

are well-defined.
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The Field of Quotients of an Integral Domain

(3) Now we show that (F,+,.) is a field by the axioms of D.
Fi) (F,+) is a commutative group.

@ + is commutative and associative in F.

e 0/b € F is the additive identity element.

@ The inverse of a/b € Fis (—a) /b € F.

Fp) (F*,.) is a commutative group.

@ . is commutative and associative in F.

@ b/b € F is the multiplicative identity element.

@ The inverse of 0/b # a/b € Fis b/a € F. That is,
(a/b).(b/a) = ab/ba = b/b.

F3) . is distributive over + in F.
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The Field of Quotients of an Integral Domain

(4) Finally we show that D can be embedded in a field F.
The function f : D — F given by f (a) = a/1p for a € D is one-to-one
homomorphism. That is,

(i) f(a+b) = (a+b) /1p=a/lp+b/1p = f(a) + f (b)

(i) f (ab) = (ab) /1p = (a/1p) (b/1p) = f (n) f (m),
and f (a) =f(b) = a/1p = b/1p, so (a,1p) ~ (b, 1p) implies
alp = blp, thus a = b.
It is clear that f (D) is a subring of F. Thus, f : D — f (D) < F is an
isomorphism; that is, D ~ f (D).

Ali Biilent Ekin, Elif Tan (Ankara University) The Field of Quotients



The Field of Quotients of an Integral Domain

Remarks:

@ The field (F,+,.) is called the field of quotients of D if there
exists a subring D’ of F such that D ~ D’ < F. Also every element
of F can be expressed as a quotients of two elements of D, since

a/b=(a/1p) (1p/b) = (a/1p) (b/1p)"".

(Q is a field of quotients of Z.)
@ Every field containing an integral domain D contains a field of
quotients of D.

@ The field of quotients of D is the smallest field containing D. That is,
no field K such that D C K C F.
(Q is a field of quotients of Z, R is not a field of quotients of Z.)
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The Field of Quotients of an Integral Domain

@ Any field of quotients of a field F is isomorphic to F.
(R is a field of quotients of R.)

@ Any two fields of quotients of D are isomorphic. Isomorphic integral
domains have isomorphic field of quotients.

Example: Find the field of quotients of Z[i] = {a+ib|a bec Z}.
The field of quotients of Z[i] is

{c+id|c,deQ}.
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The Field of Quotients of an Integral Domain

Example: Find the field of quotients of Zs.

S=Zsx7i=1{(01),072).(0.3).07),11)..... 39

0/1 = {(cd)|(cd)~(01)}
= {(c.d) |c1=d0}
{(0.1).(0.2).(0.3).(0.4)}
U1 = {(11).(22).(3.3).[@3))
12 = {(12).(29).(3.1).@3)} =3/1
13 = {(13).(21).(3.9),([32)} =2/1
/4 = {(19).(23).(3.2). @1} =4/1

Hence F = {6/1, 1/1,2/1,3/1, Z/T}. It is obvious that f: Zs — F
a — E/T
is an isomorphism.
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