CEN 207 Physical Chemistry

Text book:
Atkins' Physical Chemistry, Peter Atkins, Julio de Paula, James Keeler, $11^{\text {th }}$
Edition, Oxford University Press.

Reference books
. Physical Chemistry, Robert J. Silbey, Robert A. Alberty, Moungi G. Bawendi
. Physical Chemistry, Ira N. Levine

Content

The properties of gases
The perfect gas
Variables of state
Equations of states
The kinetic model:
The model: i) Pressure and molecular speeds; ii) The Maxwell-Boltzmann distribution of speeds; iii. Mean values
Collisions: i) The collision frequency; ii) The mean free path
Real gases: i) Deviations from perfect behaviour; ii) The van der Waals equation
The First Law: Internal Energy, Enthalpy, Thermochemistry, State functions and exact differentials, Adiabatic changes
The Second and Third Laws: Entropy, Gibbs energy etc.
Simple mixtures: The thermodynamic description of mixtures, The properties of solutions, Activities.
Chemical equilibrium: The equilibrium constant, The response of equilibria to conditions, Electrochemical cells, Electrode potentials
Processes at solid surfaces: An introduction to solid surfaces, Adsorption and desorption, Processes at electrodes.

The properties of gases

A gas is a form of matter that fills whatever container it occupies.
The perfect gas (an idealised version of gas = a perfect gas)
Perfect gas \rightarrow basis for the development of many relations in thermodynamic, and a good approximation for the properties of real gases

Variables of state: a) Pressure; b) Temperature
The physical state of a sample of a substance is defined by its physical properties.
The variables needed to specify the state of a system:
i. The amount,
ii. The volume,
iii. The pressure,
iv. The temperature.

The properties of gases
a) Pressure: The origin of the force exerted (applied) by a gas is the incessant battering of the molecules on the wall of its container. The collisions are so numerous that they exert an effectively steady force, which is experienced as a steady pressure. The pressure exerted by the atmosphere is measured with a barometer

The SI unit of pressure: the pascal ($\mathrm{Pa}, 1 \mathrm{~Pa}=1 \mathrm{~N} \mathrm{~m}^{-2}$) ; 1 bar: standard pressure
b) Temperature: Related in length of a column of liquid: Melting point of ice shows 0 (zero) and boiling point of water shows 100. 0-100 is divided into 100 steps called "degree". This procedure led to the Celsius scale of temperature. The Celsius scale is denoted theta (Θ) and expressed in degree Celsius (${ }^{\circ} \mathrm{C}$).

On the thermodynamic temperature scale temperatures are denoted T and are normally reported in kelvins (K). Thermodynamic and Celsius temperatures are related by the exact expression $\mathrm{T} / \mathrm{K}=\Theta /{ }^{\circ} \mathrm{C}+273.15$

The properties of gases

Equations of state:

The general form of an equation of state (experimental fact) is
$P=f(T, V, n) \quad$ (General form of an equation of state)
$\mathrm{T}, \mathrm{V}, \mathrm{n} \rightarrow$ if known $\rightarrow \mathrm{p}$ has fixed value
$\mathrm{p}=\mathrm{nRT} / \mathrm{V}$
R : constant (independent of the identity of the gas)

The properties of gases

a) The empirical basis: Following individual gas laws should be familiar:

Boyle's law: pV=constant, at constant \mathbf{n}, \mathbf{T}

Charles's law: $\mathrm{V}=$ constant $\mathrm{x} T$, at constant n, p
examples of a limiting law $(p \rightarrow 0)$ $\mathrm{p}=$ constant x T , at constant n, V
the volume of a substance (found empirically) $\mathbf{V}=\mathbf{a} \mathbf{T}+\mathbf{b p}+\mathbf{c p}^{\mathbf{2}}$. In the limit of $\mathrm{p} \rightarrow 0$
$\mathrm{V}=\mathrm{aT}$ (many relations that are strictly true only at $\mathrm{p}=0$)

Avogadro's principle: $\mathrm{V}=$ constant x n , at constant p, T

