CEN 207 Physical Chemistry

Text book:

Atkins' Physical Chemistry, Peter Atkins, Julio de Paula, James Keeler, 11th Edition, Oxford University Press.

Reference books

- . Physical Chemistry, Robert J. Silbey, Robert A. Alberty, Moungi G. Bawendi
- . Physical Chemistry, Ira N. Levine

C. Real gases

Real gases do not obey the perfect gas law exactly in the limit of $p \rightarrow 0$ Real gases show deviations from the perfect gas law because molecules interact with one another.

The compression factor (at the same pressure and temperature)

$$Z = \frac{V_m}{V_m^o} = \frac{molar\ volume\ of\ gas}{molar\ volume\ of\ perfect\ gas}$$
 Compression factor (definition)

$$pV_m = ZRT$$
 for real gas

Virial equation of state:

$$pV_m = RT\left(1 + \frac{B}{V_m} + \frac{C}{V_m^2} + \cdots\right) \rightarrow Z = \frac{pV_m}{RT} = \left(1 + \frac{B}{V_m} + \frac{C}{V_m^2} + \cdots\right)$$
 Virial equation of state

The coefficients B, C,, which depend on temperature, are the second, third, ... virial coefficients; the first virial coefficient is 1.

Text book: Atkins' Physical Chemistry, Peter Atkins, Julio de Paula, James Keeler, 11th Edition, Oxford University Press.

C. Real gases

van der Waals equation of state

$$p + a \frac{n^2}{V^2} = \frac{nRT}{V - nb} \rightarrow p = \frac{nRT}{V - nb} - a \frac{n^2}{V^2}$$

van der Waals equation of state

a and **b** are called the van der Waals coefficients

a: the strength of attractive interactions

b: the repulsive interaction between molecules

The First Law

Energy; 1. Heat, 2. Work, 3. Chemical reaction, 4......

Internal energy

Enthalpy

Thermochemistry

State functions and exact differentials

Adiabatic changes

System and Surroundings (outside of the system)

System: a part volume in the space/world, reaction vessel, electrochemical cell

Open system,

Closed system,

Isolated system.

Text book: Atkins' Physical Chemistry, Peter Atkins, Julio de Paula, James Keeler, 11th Edition, Oxford University Press.

The First Law Work, heat and energy

Work is done to achieve motion against an opposing force.

The energy of a system is its capacity to do work.

Heat is a kind of energy and can be converted to the work.

Kinetic energy (E_k) of a body is the energy possesses as a result of its motion ($E_k = \frac{1}{2} \text{ mv}^2$).

Potential energy is the position energy

$$E_p = -F_x dx \to F_x = -\frac{dE_p}{dx}$$

The gravitational potential energy: $E_p(h) = E_p(0) + mgh$ E(0) The zero of potential energy is arbitrary. The

$$E=E_k+E_p$$

Exothermic process: energy releases as heat

Endothermic process: energy required as heat

Text book: Atkins' Physical Chemistry, Peter Atkins, Julio de Paula, James Keeler, 11th Edition, Oxford University Press.

The First Law

Internal energy

In the thermodynamics, the total energy of a system is called its internal energy (U).

U: a state function and an extensive property of a system (depends only amount of substance).

$$\widehat{U_m} = \frac{\overset{extensive}{\widehat{U}}}{n}$$