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3-FLUID STATICS 

 

3.8. Hydrostatic Force on a Curved Surface 

 

For a submerged curved surface, the determination of the resultant hydrostatic 

force is more involved since it typically requires the integration of the pressure 

forces that change direction along the curved surface. The concept of the pressure 

prism in this case is not much help either because of the complicated shapes 

involved. 

 

Consider a curved portion of the swimming pool shown in Fig.3.30a. We wish to 

find the resultant fluid force acting on section BC (which has a unit length 

perpendicular to the plane of the paper) shown in Fig.3.30b. We first isolate a 

volume of fluid that is bounded by the surface of interest, in this instance section 

BC, the horizontal plane surface AB, and the vertical plane surface AC. The free-

body diagram for this volume is shown in Fig. 3.30c. The magnitude and location 

of forces F1 and F2 can be determined from the relationships for planar surfaces. 

The weight, W, is simply the specific weight of the fluid times the enclosed 

volume and acts through the center of gravity (CG) of the mass of fluid contained 

within the volume.  

 

 
 

Figure 3.30. Hydrostatic force on a curved surface. 

 

The forces FH and FV represent the components of the force that the tank exerts 

on the fluid. In order for this force system to be in equilibrium, the horizontal 

component must be equal in magnitude and collinear with F2, and the vertical 
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component FV equal in magnitude and collinear with the resultant of the vertical 

forces F1 and W. This follows since the three forces acting on the fluid mass (F2, 

the resultant of F1 and W, the resultant force that the tank exerts on the mass) must 

form a concurrent force system. That is, from the principles of statics, it is known 

that when a body is held in equilibrium by three nonparallel forces, they must be 

concurrent (their lines of action intersect at a common point), and coplanar. Thus, 

 

𝐹𝐻 = 𝐹2                 𝐹𝑉 = 𝐹1 + 𝑊 

 

and the magnitude of the resultant is obtained from the equation 

 

𝐹𝑅 = √(𝐹𝐻)2 + (𝐹𝑉)2        

 

The tangent of the angle it makes with the horizontal is 

 

𝜃 = arctan (
𝐹𝐻

𝐹𝑉
) 

 

The resultant force FR passes through the point O, which can be located by 

summing moments about an appropriate axis. The resultant force of the fluid 

acting on the curved surface BC is equal and opposite in direction to that obtained 

from the free-body diagram of Fig.3.30c. The desired fluid force is shown in 

Fig.3.30d 

 

We conclude that 

 

1. The horizontal component of the hydrostatic force acting on a curved surface 

is equal (in both magnitude and the line of action) to the hydrostatic force acting 

on the vertical projection of the curved surface. 

 

2. The vertical component of the hydrostatic force acting on a curved surface is 

equal to the hydrostatic force acting on the horizontal projection of the curved 

surface, plus (minus, if acting in the opposite direction) the weight of the fluid 

block. These discussions are valid for all curved surfaces regardless of whether 

they are above or below the liquid. Note that in the case of a curved surface above 

a liquid, the weight of the liquid is subtracted from the vertical component of the 

hydrostatic force since they act in opposite directions (Fig.3.31) 
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Figure 3.31. When a curved surface is above the liquid, the weight of the 

liquid and the vertical component of the hydrostatic force act in the opposite 

directions 

 

Example: A 2 m diameter drainage conduit of the type shown in Fig a is half full 

of water at rest, as shown in Fig. b. Determine the magnitude and line of action of 

the resultant force that the water exerts on a 1-m length of the curved section BC 

of the conduit wall. 

 

 

 
 

Solution: We first isolate a volume of fluid bounded by the curved section BC, 

the horizontal surface AB, and the vertical surface AC, as shown in Fig.c. The 

volume has a length of 1 m. The forces acting on the volume are the horizontal 

force, F1, which acts on the vertical surface AC, the weight,W, of the fluid 

contained within the volume, and the horizontal and vertical components of the 

force of the conduit wall on the fluid, FH and FV, respectively. The magnitude of 

F1 is found from the equation. 

 

𝐹1 = 𝛾ℎ𝑐𝐴 = 9810×
1

2
×1×1 = 4905 𝑁 
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and this force acts 1/3 m above C as shown. The weight , 𝑊 = 𝛾∀ where ∀  is 

the fluid volume, is  

𝑊 = 𝛾∀= 9810×
𝜋22

4×4
×1 = 7705 𝑁 

 

and acts through the center of gravity of the mass of fluid, which according to 

 
4𝑅

3𝜋
=

4×1

3𝜋
= 0.4244 𝑚 to the right of AC as shown. Therefore, to satisfy 

equilibrium 

 

𝐹𝐻 = 𝐹1 = 4905 𝑁   𝐹𝑉 = 𝑊 = 7705 𝑁 

 

𝐹𝑅 = √(4905)2 + (7705)2=9134 N           𝜃 = arctan (
𝐹𝐻

𝐹𝑉
) = arctan (

4905

9134
) =

32.48° 
 

The force the water exerts on the conduit wall is equal, but opposite in direction, 

to the forces FH and FV shown in Fig. c. Thus, the resultant force on the conduit 

wall is shown in Fig. d. This force acts through the point O at the angle shown. 

 

Example: A long solid cylinder of radius 0.8 m hinged at point A is used as an 

automatic gate, as shown in figure of the free-body diagram of the fluid 

underneath the cylinder When the water level reaches 5 m, the gate opens by 

turning about the hinge at point A. Determine (a) the hydrostatic force acting on 

the cylinder and its line of action when the gate opens and (b) the weight of the 

cylinder per m length of the cylinder. 
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Solution: (a) We consider the free-body diagram of the liquid block enclosed by 

the circular surface of the cylinder and its vertical and horizontal projections. The 

hydrostatic forces acting on the vertical and horizontal plane surfaces as well as 

the weight of the liquid block are determined as Horizontal force on vertical 

surface: 

 

𝐹𝐻 = 𝐹𝑥 = 𝑃𝑎𝑣𝑒𝐴 = 9810× (4.2 +
0.8

2
) (0.8×1) = 36101 𝑁 

 

Vertical force on horizontal surface (upward): 

 

𝐹𝑦 = 𝑃𝑎𝑣𝑒𝐴 = 9810×5×(0.8×1) = 39240 𝑁 

 

Weight of fluid block per m length (downward): 

 

𝑊 = 𝑚𝑔 = 𝜌𝑔∀= 𝜌𝑔 (𝑅2 −
𝜋𝑅2

4
) (1) 

𝑊 = 9810 (0.82 − 0.82×
𝜋

4
) (1) = 1347 𝑁 

 

Therefore, the net upward vertical force is 

 

𝐹𝑉 = 𝐹𝑦 − 𝑊 = 39240 − 1347 = 37893 𝑁 
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Then the magnitude and direction of the hydrostatic force acting on the 

cylindrical surface become 

 

𝐹𝑅 = √(𝐹𝐻)2 + (𝐹𝑉)2        

 

𝐹𝑅 = √(36101)2 + (37893)2 =52337 N        

 

The tangent of the angle it makes with the horizontal is 

 

𝜃 = arctan (
𝐹𝑉

𝐹𝐻
) = arctan (

37893

36101
) = 46.4° 

 

Therefore, the magnitude of the hydrostatic force acting on the cylinder is 52 337 

N per m length of the cylinder, and its line of action passes through the center of 

the cylinder making an angle 46.61° with the horizontal. 

 

(b) When the water level is 5 m high, the gate is about to open and thus the reaction 

force at the bottom of the cylinder is zero. Then the forces other than those at the 

hinge acting on the cylinder are its weight, acting through the center, and the 

hydrostatic force exerted by water. Taking a moment about point A at the location 

of the hinge and equating it to zero gives 

 

𝐹𝑅𝑅𝑠𝑖𝑛𝜃 − 𝑊𝑐𝑦𝑙𝑅 = 0 → 𝑊𝑐𝑦𝑙 = 𝐹𝑅𝑠𝑖𝑛𝜃 = 52337×𝑠𝑖𝑛46.4 = 37900 𝑁 

 

3.9. Buoyancy and Floatation 

 

It is a common experience that an object feels lighter and weighs less in a liquid 

than it does in air. Also, objects made of wood or other light materials float on 

water. These and other observations suggest that a fluid exerts an upward force 

on a body immersed in it. This force that tends to lift the body is called the buoyant 

force and is denoted by FB. 

 

The buoyant force is caused by the increase of pressure in a fluid with depth. 

Consider, for example, a flat plate of thickness h submerged in a liquid of density 

ρf  parallel to the free surface, as shown in Fig.3.32.  
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Figure 3.32. A flat plate of uniform thickness h submerged in a liquid 

parallel to the free surface 

 

The area of the top (and also bottom) surface of the plate is A, and its distance to 

the free surface is s. The pressures at the top and bottom surfaces of the plate are 

ρf g s and ρf g (s+ h), respectively. Then the hydrostatic force Ftop= ρfgsA acts 

downward on the top surface, and the larger force F bottom: ρf g (s+h) A acts 

upward on the bottom surface of the plate. The difference between these two 

forces is a net upward force, which is the buoyant force, 

 

FB=Fbottom-Ftop=ρf g (s+h) A- ρf g h A= ρf g ∀ 

 

𝐹𝐵 = 𝛾∀ 

 

Where; FB is the buoyant force (N), γ is the specific weight of fluid (N/m3), and 

∀ is the volume of the body (m3) 

 

The direction of the buoyant force, which is the force of the fluid on the body, is 

opposite to that shown on the freebody diagram. Therefore, the buoyant force 

has a magnitude equal to the weight of the fluid displaced by the body and is 

directed vertically upward.  

 

The weight of the liquid whose volume is equal to the volume of the plate. We 

conclude that the buoyant force acting on the plate is equal to the weight of the 

liquid displaced by the plate. Note that the buoyant force is independent of the 

distance of the body from the free surface. It is also independent of the density of 

the solid body.  

The buoyant force acting on a body immersed in a fluid is equal to the weight 

of the fluid displaced by the body, and it acts upward through the centroid of 

the displaced volume. 
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For floating bodies, the weight of the entire body must be equal to the buoyant 

force, which is the weight of the fluid whose volume is equal to the volume of the 

submerged portion of the floating body. That is, 

 

𝐹𝐵 = 𝑊 → 𝜌𝑓𝑔∀𝑠𝑢𝑏= 𝜌𝑎𝑣𝑒,𝑏𝑜𝑑𝑦𝑔∀𝑡𝑜𝑡𝑎𝑙→
∀𝑠𝑢𝑏

∀𝑡𝑜𝑡𝑎𝑙
=

𝜌𝑎𝑣𝑒,𝑏𝑜𝑑𝑦

𝜌𝑓
 

Therefore, the submerged volume fraction of a floating body is equal to the ratio 

of the average density of the body to the density of the fluid. Note that when the 

density ratio is equal to or greater than one, the floating body becomes completely 

submerged.  

 

It follows from these discussions that a body immersed in a fluid 

 

1) Remains at rest at any point in the fluid when its density is equal to the density 

of the fluid,  

2) Sinks to the bottom when its density is greater than the density of the fluid, and 

3) Rises to the surface of the fluid and floats when the density of the body is less 

than the density of the fluid (Fig.3.33). 

 

 
 

Figure 3.33. A solid body dropped into a fluid will sink, float, or remain at 

rest at any point in the fluid, depending on its density relative to the density 

of the fluid. 

 

The buoyant force is proportional to the density of the fluid, and thus we might 

think that the buoyant force exerted by gases such as air is negligible. This is 

certainly the case in general, but there are significant exceptions. For example, the 
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volume of a person is about 0.1 m3, and taking the density of air to be 1.2 kg/m3, 

the buoyant force exerted by air on the person is 

 

𝐹𝐵 = 𝜌𝑔∀= 1.2×9.81×0.1 = 1.2 𝑁 

 

The weight of an 80-kg person is 80 × 9.81= 788 N. Therefore, ignoring the 

buoyancy in this case results in an error in weight of just 0.15 percent, which is 

negligible. But the buoyancy effects in gases dominate some important natural 

phenomena such as the rise of warm air in a cooler environment and thus the onset 

of natural convection currents, the rise of hot-air or helium balloons, and air 

movements in the atmosphere. A helium balloon, for example, rises as a result of 

the buoyancy effect until it reaches an altitude where the density of air (which 

decreases with altitude) equals the density of helium in the balloon—assuming 

the balloon does not burst by then, and ignoring the weight of the balloon’s skin. 

Archimedes’ principle is also used in modern geology by considering the 

continents to be floating on a sea of magma. 

 

Example: A crane is used to lower weights into the sea (density = 1025 kg/m3) 

for an underwater construction project (Fig.). Determine the tension in the rope of 

the crane due to a rectangular 0.4×0.4×3 m concrete block (density= 2300 kg/m3) 

when it is (a) suspended in the air and (b) completely immersed in water. The 

buoyancy of air is negligible.  The weight of the ropes is negligible. 

 

Solution: A concrete block is lowered into the sea. The tension in the rope is to 

be determined before and after the block is in water. (a) Consider the free-body 

diagram of the concrete block. The forces acting on the concrete block in air are 

its weight and the upward pull action (tension) by the rope. These two forces 

must balance each other, and thus the tension in the rope must be equal to the 

weight of the block: 

 

∀= 0.4×0.4×3 = 0.48 𝑚3 

 

𝐹𝑇,𝑎𝑖𝑟 = 𝑊 = 𝜌𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒𝑔∀= 2300×9.81×0.48 = 10830 𝑁 

 

(b) When the block is immersed in water, there is the additional force of 

buoyancy acting upward. The force balance in this case gives 

 

𝐹𝐵 = 𝛾∀= 1025×9.81×0.48 = 4827 𝑁 

 

𝐹𝑇,𝑤𝑎𝑡𝑒𝑟 = 𝑊 − 𝐹𝐵 = 10830 −4827=6003 N 

 

Note that the weight of the concrete block, and thus the tension of the rope, 

decreases by (10.8 - 6.0)/10.8= 55 percent in water. 
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3.10. Pressure Variation in a Fluid with Rigid-Body Motion 

 

We knew that the pressure at a given point has the same magnitude in all 

directions, and thus it is a scalar function. In this section we obtain relations for 

the variation of pressure in fluids moving like a solid body with or without 

acceleration in the absence of any shear stresses (i.e., no motion between fluid 

layers relative to each other). 

 

Many fluids such as milk and gasoline are transported in tankers. In an 

accelerating tanker, the fluid rushes to the back, and some initial splashing occurs. 

But then a new free surface (usually nonhorizontal) is formed, each fluid particle 

assumes the same acceleration, and the entire fluid moves like a rigid body. No 

shear stresses develop within the fluid body since there is no deformation and thus 

no change in shape. Rigid-body motion of a fluid also occurs when the fluid is 

contained in a tank that rotates about an axis. 

 

if a container of fluid accelerates along a straight path, the fluid will move as a 

rigid mass (after the initial sloshing motion has died out) with each particle having 
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the same acceleration. Since there is no deformation, there will be no shearing 

stresses. Similarly, if a fluid is contained in a tank that rotates about a fixed axis, 

the fluid will simply rotate with the tank as a rigid body. 

 

3.10.1. Linear Motion 

 

We first consider an open container of a liquid that is translating along a straight 

path with a constant acceleration a as illustrated in Fig.3.34. Since ax= 0, it 

follows from the  of  equation of  −
𝜕𝑃

𝜕𝑥
= 𝜌𝑎𝑥 = 0 that the pressure gradient in 

the x direction is zero In the y and z direction 

 
𝜕𝑃

𝜕𝑦
= −𝜌𝑎𝑦            

𝜕𝑃

𝜕𝑧
= −𝜌(𝑔 + 𝑎𝑧) 

 

The change in pressure between two closely spaced points located at y, z,and 

y+dy, z+dz can be expressed as 

 

𝑑𝑝 =
𝜕𝑃

𝜕𝑦
𝑑𝑦 +

𝜕𝑃

𝜕𝑧
𝑑𝑧 

Or in terms of the the results from the above equations we can write 

 

𝑑𝑃 = −𝜌𝑎𝑦𝑑𝑦 − 𝜌(𝑔 + 𝑎𝑧)𝑑𝑧 

 

Along a line of constant pressure, dP=0 and therefore from the last equation it 

follows that the slope of this line is given by the relationship 

 
𝑑𝑧

𝑑𝑦
= −

𝑎𝑦

𝑔 + 𝑎𝑧
 

 

This relationship is illustrated by the figure in the Fig.3.34d. Along a free surface 

the pressure is constant, so that for the accelerating mass shown in Fig. 3.34b the 

free surface will be inclined if 𝑎𝑦 ≠ 0. In addition, all lines of constant pressure 

will be parallel to the free surface as illustrated. 
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Figure 3.34.Linear motion 

 

For the special circumstance in which ay=0, az=0, which corresponds to the mass 

of fluid accelerating in the vertical direction, 
𝑑𝑧

𝑑𝑦
= −

𝑎𝑦

𝑔+𝑎𝑧
 indicates that the fluid 

surface will be horizontal. However, we see that the pressure distribution is not 

hydrostatic, but is given by the equation 

 
𝑑𝑃

𝑑𝑧
= −𝜌(𝑔 + 𝑎𝑧) 

 

For fluids of constant density this equation shows that the pressure will vary 

linearly with depth, but the variation is due to the combined effects of gravity and 

the externally induced acceleration, ρ(g+az), rather than simply the specific weight 

ρg. Thus, for example, the pressure along the bottom of a liquid-filled tank which 

is resting on the floor of an elevator that is accelerating upward will be increased 

over that which exists when the tank is at rest (or moving with a constant velocity). 

It is to be noted that for a freely falling fluid mass (az=-g), the pressure gradients 

in all three coordinate directions are zero, which means that if the pressure 

surrounding the mass is zero, the pressure throughout will be zero. The pressure 

throughout a “blob” of orange juice floating in an orbiting space shuttle (a form 

of free fall) is zero. The only force holding the liquid together is surface tension. 

 

Example: An 80-cm-high fish tank of cross section 2 m (0.6 m that is initially 

filled with water is to be transported on the back of a truck (Fig.). The truck 

accelerates from 0 to 90 km/h in 10 s. If it is desired that no water spills during 

acceleration, determine the allowable initial water height in the tank. Would you 

recommend the tank to be aligned with the long or short side parallel to the 

direction of motion? The road is horizontal during acceleration so that 

acceleration has no vertical component (az=0). Effects of splashing, braking, 
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driving over bumps, and climbing hills are assumed to be secondary and are not 

considered. The cceleration remains constant. 

 
 

Solution: We take the x-axis to be the direction of motion, the z-axis to be the 

upward vertical direction, and the origin to be the lower left corner of the tank. 

Noting that the truck goes from 0 to 90 km/h in 10 s, the acceleration of the truck 

is 

 

𝑎𝑥 =
∆𝑥

∆𝑡
=

(90 − 0)/3.6

10
= 2.5 𝑚/𝑠2 

 

The tangent of the angle the free surface makes with the horizontal is 

𝑡𝑎𝑛𝜃 =
𝑎𝑥

𝑔 + 𝑎𝑧
=

2.5

9.81 + 0
= 0.255 → 𝑎𝑛𝑑 𝑡ℎ𝑢𝑠 𝜃 = 14.3° 

 

The maximum vertical rise of the free surface occurs at the back of the tank, and 

the vertical midplane experiences no rise or drop during acceleration since it is a 

plane of symmetry. Then the vertical rise at the back of the tank relative to the 

midplane for the two possible orientations becomes  

 

Case 1: The long side is parallel to the direction of motion: 

∆𝑧𝑠1 = (
𝑏1

2
) 𝑡𝑎𝑛𝜃 = [2/2]×0.255 = 0.255 𝑚 = 25.5 𝑐𝑚 

 

Case 2: The short side is parallel to the direction of motion: 
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∆𝑧𝑠2 = (
𝑏2

2
) 𝑡𝑎𝑛𝜃 = [0.6/2]×0.255 = 0.076 𝑚 = 7.6 𝑐𝑚 

 

Therefore, assuming tipping is not a problem, the tank should definitely be 

oriented such that its short side is parallel to the direction of motion. Emptying 

the tank such that its free surface level drops just 7.6 cm in this case will be 

adequate to avoid spilling during acceleration. Note that the orientation of the tank 

is important in controlling the vertical rise. Also, the analysis is valid for any fluid 

with constant density, not just water, since we used no information that pertains 

to water in the solution. 

 

3.10.2. Rigid-Body Rotation 

 

We know from experience that when a glass filled with water is rotated about its 

axis, the fluid is forced outward as a result of the so-called centrifugal force, and 

the free surface of the liquid becomes concave. This is known as the forced vortex 

motion. 

 

Consider a vertical cylindrical container partially filled with a liquid. The 

container is now rotated about its axis at a constant angular velocity of 𝜔 

(Fig.3.35)After initial transients, the liquid will move as a rigid body together with 

the container. There is no deformation, and thus there can be no shear stress, and 

every fluid particle in the container moves with the same angular velocity. 

 

 
Figure 3.35. Rigid-body rotation of a liquid in a tank.  

 

It is known from elementary particle dynamics that the acceleration of a fluid 

particle located at a distance r from the axis of rotation is equal in magnitude to 

𝑟𝜔2 and the direction of the acceleration is toward the axis of rotation, as is 

illustrated in the figure. Since the paths of the fluid particles are circular, it is 

convenient to use cylindrical polar coordinates r, θ, and z, defined in the insert in 

Fig.3.35. 
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The equation for surfaces of constant pressure of free surface for rigid body 

rotation can be written as the following. 

 

𝑧 =
𝑟2𝜔2

2𝑔
+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

Where; z is the distance of the free surface from the bottom of the container at 

radius r, 𝜔 is the angular velocity that calculated as 𝜋(2𝑟)2𝑛/4.  

 

This equation reveals that these surfaces of constant pressure are parabolic, as 

illustrated in below Fig.3.36.  

 

𝑃 =
𝜌𝑟2𝜔2

2
− 𝛾𝑧 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

The pressure varies with the distance from the axis of rotation,  but at a fixed 

radius, the pressure varies hydrostatically in the vertical direction as shown inFig. 

 
Figure 3.36. Pressure distribution in a rotating liquid. 

 

Example: A 20-cm-diameter, 60-cm-high vertical cylindrical container, shown in 

Fig., is partially filled with 50-cm-high liquid whose density is 850 kg/m3. Now 

the cylinder is rotated at a constant speed. Determine the rotational speed at which 

the liquid will start spilling from the edges of the container. The increase in the 

rotational speed is very slow so that the liquid in the container always acts as a 

rigid body. The bottom surface of the container remains covered with liquid 

during rotation (no dry spots). 
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𝑧 =
𝑟2𝜔2

2𝑔
+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡    0.20 =

0.12(
2𝜋𝑛

60
)

2×9.81
+ 0 → 𝑛 = 189 𝑟𝑝𝑚 

 

SUMMARY 

 

Some of the important equations in this chapter are: 

 

Pressure gradient in a stationary fluid: 
𝑑𝑃

𝑑𝑧
= −𝛾 

 

Pressure variation in a stationary incompressible fluid: 𝑃1 = 𝛾ℎ + 𝑃2 

 

Hydrostatic force on a plane surface: 𝐹𝑅 = 𝛾ℎ𝑐𝐴 

 

Location of hydrostatic force on a plane surface: 𝑥𝑅 =
𝐼𝑥𝑦𝑐

𝑦𝑐𝐴
+ 𝑥𝑐   ;  𝑦𝑅 =

𝐼𝑥𝑐

𝑦𝑐𝐴
+ 𝑦𝑐   

Boyant Force: 𝐹𝐵 = 𝛾∀ 

 

Pressure gradient in rigid-body motion: 
𝜕𝑃

𝜕𝑥
= −𝜌𝑎𝑥; 

𝜕𝑃

𝜕𝑦
= −𝜌𝑎𝑦;  

𝜕𝑃

𝜕𝑧
= 𝛾 + 𝜌𝑎𝑧 

 

Pressure gradient in rigid –body rotation: 
𝜕𝑃

𝜕𝑟
= 𝜌𝑟𝜔2; 

𝜕𝑃

𝜕𝜃
= 0;  

𝜕𝑃

𝜕𝑧
= −𝛾 
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Pascal’s Law: The pressure at a point in a fluid at rest, or in motion, is 

independent of direction as long as there are no shearing stresses present. 

Pz=Ps=Py. Pascal’s law states that the pressure applied to a confined fluid 

increases the pressure throughout by the same amount. This is a consequence of 

the pressure in a fluid remaining constant in the horizontal direction. An example 

of Pascal’s principle is the operation of the hydraulic car jack.  

 

Incompressible Fluid: a fluid with constant density is called an incompressible 

fluid. 

 

Pressure Head: the pressure head denoted h is interpreted as the height of a 

column of fluid of specific weight 𝛾 required to give a pressure difference P1-P2.  

ℎ = (𝑃1 − 𝑃2)/𝛾. 

 

Compressible Fluid: We normally think of gases such as air, oxygen, and 

nitrogen as being compressible fluids since the density of the gas can change 

significantly with changes in pressure and temperature. 

 

Absolute Pressure: The pressure in the ideal gas law must be expressed as an 

absolute pressure, denoted (abs), which means that it is measured relative to 

absolute zero pressure (a pressure that would only occur in a perfect vacuum). 

 

Gage Pressure: In engineering it is common practice to measure pressure relative 

to the local atmospheric pressure, and when measured in this fashion it is called 

gage pressure. Thus, the absolute pressure can be obtained from the gage pressure 

by adding the value of the atmospheric pressure. 

 

Vacuum Pressure: A negative gage pressure is also referred to as a suction or 

vacuum pressure. 

 

Barometer: The measurement of atmospheric pressure is usually accomplished 

with a ercury barometer,which in its simplest form consists of a glass tube closed 

at one end with the open end immersed in a container of mercury 

 

Manometer: A standard technique for measuring pressure involves the use of 

liquid columns in vertical or inclined tubes. Pressure measuring devices based on 

this technique are called manometers 

 

Center of Pressure: The point through which the resultant force acts is called the 

center of pressure 
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Buoyant Force: When a stationary body is completely submerged in a fluid (such 

as the hot air balloon shown in the figure), or floating so that it is only partially 

submerged, the resultant fluid force acting on the body is called the buoyant force 

 

Archimedes’ Principle: the buoyant force has a magnitude equal to the weight 

of the fluid displaced by the body and is directed vertically upward. This result is 

commonly referred to as Archimedes’ principle in honor of Archimedes 

 

Center of Buoyancy: The point through which the buoyant force acts is called 

the center of buoyancy. 

 

EXAMPLES 

 

Example: What is the difference between gage pressure and absolute pressure?  

 

Solution: The pressure relative to the atmospheric pressure is called the gage 

pressure, and the pressure relative to an absolute vacuum is called absolute 

pressure. Most pressure gages (like your bicycle tire gage) read relative to 

atmospheric pressure, and therefore read the gage pressure. 

 

Example: Explain why some people experience nose bleeding and some others 

experience shortness of breath at high elevations. 

 

Solution: Atmospheric air pressure which is the external pressure exerted on the 

skin decreases with increasing elevation. Therefore, the pressure is lower at higher 

elevations. As a result, the difference between the blood pressure in the veins and 

the air pressure outside increases. This pressure imbalance may cause some thin-

walled veins such as the ones in the nose to burst, causing bleeding. The shortness 

of breath is caused by the lower air density at higher elevations, and thus lower 

amount of oxygen per unit volume. 

 

 

Example: Someone claims that the absolute pressure in a liquid of constant 

density doubles when the depth is doubled. Do you agree? Explain. 

 

Solution: No, the absolute pressure in a liquid of constant density does not double 

when the depth is doubled. It is the gage pressure that doubles when the depth is 

doubled. This is analogous to temperature scales – when performing analysis 

using something like the ideal gas law, you must use absolute temperature (K), 

not relative temperature (oC), or you will run into the same kind of problem. 

 

Example: Express Pascal’s law, and give a real-world example of it. 
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Solution: Pascal’s law states that the pressure applied to a confined fluid 

increases the pressure throughout by the same amount. This is a consequence of 

the pressure in a fluid remaining constant in the horizontal direction. An example 

of Pascal’s principle is the operation of the hydraulic car jack. The above 

discussion applies to fluids at rest (hydrostatics). When fluids are in motion, 

Pascal’s principle does not necessarily apply. However, as we shall see in later 

chapters, the differential equations of incompressible fluid flow contain only 

pressure gradients, and thus an increase in pressure in the whole system does not 

affect fluid motion. 

 

Example: Consider two identical fans, one at sea level and the other on top of a 

high mountain, running at identical speeds. How would you compare (a) the 

volume flow rates and (b) the mass flow rates of these two fans? 

 

Solution: The density of air at sea level is higher than the density of air on top of 

a high mountain. Therefore, the volume flow rates of the two fans running at 

identical speeds will be the same, but the mass flow rate of the fan at sea level 

will be higher. 

 

Example: A vacuum gage connected to a chamber reads 24 kPa at a location 

where the atmospheric pressure is 92 kPa. Determine the absolute pressure in the 

chamber. 

 

Solution: The absolute pressure in the chamber is determined from 

𝑷𝒂𝒃𝒔 = 𝑷𝒂𝒕𝒎 − 𝑷𝒗𝒂𝒄 = 𝟗𝟐 − 𝟐𝟒 = 𝟔𝟖 𝒌𝑷𝒂 

 

Example: Determine the atmospheric pressure at a location where the barometric 

reading is 750 mmHg. Take the density of mercury to be 13.600 kg/m3. 

 

Solution: The atmospheric pressure is determined directly from 

 

𝑃𝑎𝑡𝑚 = 𝜌𝑔ℎ = 13600×9.81×0.75 = 100062 𝑃𝑎 

 

Example: The water in a tank is pressurized by air, and the pressure is measured 

by a multifluid manometer as shown in Fig.. Determine the gage pressure of air 

in the tank if h1= 0.2 m, h2= 0.3 m, and h3= 0.46 m. Take the densities of water, 

oil, and mercury to be 1000 kg/m3, 850 kg/m3, and 13.600 kg/m3, respectively. 
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Solution: Starting with the pressure at point 1 at the air-water interface, and 

moving along the tube by adding (as we go down) or subtracting (as we go up) 

the ρgh terms until we reach point 2, and setting the result equal to Patm since the 

tube is open to the atmosphere gives 

 

𝑃1 + 𝜌𝑤𝑔ℎ1 + 𝜌𝑜𝑔ℎ2 − 𝜌𝑚𝑔ℎ3 = 𝑃𝑎𝑡𝑚 

 

𝑃1 = 𝑃𝑎𝑡𝑚 − 𝜌𝑤𝑔ℎ1 − 𝜌𝑜𝑔ℎ2 + 𝜌𝑚𝑔ℎ3 

 

𝑃1 = 0 − 1000×9.81×0.2 − 850×9.81×0.3 + 13600×9.81×0.46 

 

𝑃1 = 56907.81 𝑃𝑎 
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Example: The gage pressure in a liquid at a depth of 3 m is read to be 28 kPa. 

Determine the gage pressure in the same liquid at a depth of 12 m. 

 

Solution: The gage pressure at two different depths of a liquid can be expressed 

as P1 = ρgh1 and P2 = ρgh2. Taking their ratio, 

 
𝑃2

𝑃1
=

𝜌 𝑔 ℎ2

𝜌 𝑔 ℎ1
=

ℎ2

ℎ1
→ 𝑃2 = 𝑃1

ℎ2

ℎ1
= 28

12

3
= 112 𝑘𝑃𝑎 

 

 
 

Example: The absolute pressure in water at a depth of 5 m is read to be 145 kPa. 

Determine (a) the local atmospheric pressure, and (b) the absolute pressure at a 

depth of 5 m in a liquid whose specific gravity is 0.85 at the same location. The 

liquid and water are incompressible. 

 

Solution: The specific gravity of the fluid is given to be SG = 0.85. We take the 

density of water to be 1000 kg/m3. Then density of the liquid is obtained by 

multiplying its specific gravity by the density of water, 

 

(a) Knowing the absolute pressure, the atmospheric pressure can be determined 

from 𝑃 = 𝑃𝑎𝑡𝑚 + 𝜌𝑔ℎ 

 

𝑃𝑎𝑡𝑚 = 𝑃 − 𝜌𝑔ℎ = 145000 − 1000×9.81×5 = 95950 𝑃𝑎 

 

(b) The absolute pressure at a depth of 5 m in the other liquid is 

𝑃 = 𝑃𝑎𝑡𝑚 + 𝜌𝑔ℎ = 95950 − 1000×9.81×5 = 46900 𝑃𝑎 
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Example: Consider a 70-kg woman who has a total foot imprint area of 400 cm2. 

She wishes to walk on the snow, but the snow cannot withstand pressures greater 

than 0.5 kPa. Determine the minimum size of the snowshoes needed (imprint area 

per shoe) to enable her to walk on the snow without sinking. 

 

Solution: The weight of the person is distributed uniformly on the imprint area of 

the shoes. One foot carries the entire weight of a person during walking, and the 

shoe is sized for walking conditions (rather than standing).  The weight of the 

shoes is negligible. The mass of the woman is given to be 70 kg. For a pressure 

of 0.5 kPa on the snow, the imprint area of one shoe must be 

 

𝐴 =
𝑊

𝑃
=

70 𝑘𝑔×9.81 𝑚/𝑠2

500
= 1.3734 𝑚2 

 

Example: A vacuum gage connected to a tank reads 30 kPa at a location where 

the barometric reading is 755 mmHg. Determine the absolute pressure in the tank. 

Take ρHg=  13.590 kg/m3 

 

Solution: The atmospheric (or barometric) pressure can be expressed as  

 

𝑃𝑎𝑡𝑚 = 𝜌𝑔ℎ = 13590×9.81×0.755 = 100655 𝑃𝑎 

 

Example: A pressure gage connected to a tank reads 500 kPa at a location where 

the atmospheric pressure is 94 kPa. Determine the absolute pressure in the tank. 

 

Solution: The absolute pressure in the tank is determined from 

 

𝑃𝑎𝑏𝑠 = 𝑃𝑔𝑎𝑔𝑒 + 𝑃𝑎𝑡𝑚 = 500 + 94 = 594 𝑘𝑃𝑎 

 

Example: The basic barometer can be used to measure the height of a building. 

If the barometric readings at the top and at the bottom of a building are 730 and 

755 mmHg, respectively, determine the height of the building. Assume an average 

air density of 1.18 kg/m3. The variation of air density with altitude is negligible. 
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Solution: Atmospheric pressures at the top and at the bottom of the building are 

 

𝑃𝑡𝑜𝑝 = (𝜌𝑔ℎ)𝑡𝑜𝑝 = 13600×9.81×0.73 = 97394 𝑃𝑎 

 

𝑃𝑏𝑜𝑡𝑡𝑜𝑚 = (𝜌𝑔ℎ)𝑏𝑜𝑡𝑡𝑜𝑚 = 13600×9.81×0.755 = 100729 𝑃𝑎 

 

Taking an air column between the top and the bottom of the building, we write a 

force per unit base area. 

 
𝑊𝑎𝑖𝑟

𝐴
= 𝑃𝑏𝑜𝑡𝑡𝑜𝑚 − 𝑃𝑡𝑜𝑝 = (𝜌𝑔ℎ)𝑎𝑖𝑟 = 100729 − 97394 = 3335 𝑃𝑎 

 

1.18×9.81×ℎ = 3335 𝑃𝑎 → ℎ = 288.1 𝑚 

 

 
 

Example: Determine the absolute pressure exerted on a diver at 30 m below the 

free surface of the sea. Assume a barometric pressure of 101 kPa and a specific 

gravity of 1.03 for seawater. 

 

Solution: The pressure exerted on a diver at 30 m below the free surface of the 

sea is the absolute pressure at that location: 

 

𝑃𝑎𝑏𝑠 = 𝜌𝑔ℎ + 𝑃𝑎𝑡𝑚 = 1.03×9810×30 + 101000 = 404129 𝑃𝑎 

 

Example: A gas is contained in a vertical, frictionless piston–cylinder device. The 

piston has a mass of 4 kg and a crosssectional area of 35 cm2. A compressed spring 

above the piston exerts a force of 60 N on the piston. If the atmospheric pressure 

is 95 kPa, determine the pressure inside the cylinder. 
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Solution: Drawing the free body diagram of the piston and balancing the vertical 

forces yields 

𝑃×𝐴 = 𝑃𝑎𝑡𝑚𝐴 + 𝑊 + 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 

 

𝑃 = 𝑃𝑎𝑡𝑚 +
𝑚𝑔 + 𝐹𝑠𝑝𝑟𝑖𝑛𝑔

𝐴
= 95000 +

4×9.81 + 60

35×10−4
= 123354 𝑃𝑎 

 

 
 

Example: Both a gage and a manometer are attached to a gas tank to measure its 

pressure. If the reading on the pressure gage is 80 kPa, determine the distance 

between the two fluid levels of the manometer if the fluid is (a) mercury (ρ= 

13.600 kg/m3) or (b) water (ρ=1000 kg/m3). 
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Solution: The gage pressure is related to the vertical distance h between the two 

fluid levels by 

 

(a) For mercury, 𝑃𝑔𝑎𝑔𝑒 = 𝜌𝑔ℎ → ℎ =
𝑃𝑔𝑎𝑔𝑒

𝜌𝑔
=

80000

13600×9.81
= 0.60 𝑚 

 

(b) For water,  𝑃𝑔𝑎𝑔𝑒 = 𝜌𝑔ℎ → ℎ =
𝑃𝑔𝑎𝑔𝑒

𝜌𝑔
=

80000

1000×9.81
= 8.16  𝑚 

 

Example: A mercury manometer (ρ=13.600 kg/m3) is connected to an air duct to 

measure the pressure inside. The difference in the manometer levels is 15 mm, 

and the atmospheric pressure is 100 kPa. (a) Judging from Fig., determine if the 

pressure in the duct is above or below the atmospheric pressure. (b) Determine 

the absolute pressure in the duct. 

 

 
Solution: (a) The pressure in the duct is above atmospheric pressure since the 

fluid column on the duct side is at a lower level. (b) The absolute pressure in the 

duct is determined from 

 

𝑃 = 𝜌𝑔ℎ + 𝑃𝑎𝑡𝑚 = 13600×9.81×0.015 + 100000 = 102001 𝑃𝑎 
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Example: The maximum blood pressure in the upper arm of a healthy person is 

about 120 mmHg. If a vertical tube open to the atmosphere is connected to the 

vein in the arm of the person, determine how high the blood will rise in the tube. 

Take the density of the blood to be 1050 kg/m3. The density of blood is constant. 

The gage pressure of blood is 120 mmHg. 

 

 
 

Solution: For a given gage pressure, the relation P = ρgh can be expressed for 

mercury and blood as P = ρblood g hblood and P = ρmercury g hmercury.  Setting these 

two relations equal to each other we get P = ρblood g hblood = ρmercury g hmercury. 

Solving for blood height and substituting gives 

 

ℎ𝑏𝑙𝑜𝑜𝑑 =
𝜌𝑚𝑒𝑟𝑐𝑢𝑟𝑦

𝜌𝑏𝑙𝑜𝑜𝑑
ℎ𝑚𝑒𝑟𝑐𝑢𝑟𝑦 =

13600

1050
0.12 = 1.554 𝑚 

 

 
Example: The hydraulic lift in a car repair shop has an output diameter of 30 cm 

and is to lift cars up to 2000 kg. Determine the fluid gage pressure that must be 

maintained in the reservoir. 
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Solution: Pressure is force per unit area, and thus the gage pressure required is 

simply the ratio of the weight of the car to the area of the lift, 

 

𝑃𝑔𝑎𝑔𝑒 =
𝑊

𝐴
=

2000×9.81

𝜋0.32/4
= 277566 𝑃𝑎 

 

 

 
Example: Freshwater and seawater flowing in parallel horizontal pipelines are 

connected to each other by a double U-tube manometer, as shown in Fig.. 

Determine the pressure difference between the two pipelines. Can the air column 

be ignored in the analysis? The densities of seawater and mercury are given to be 

ρsea = 1035 kg/m3 and ρHg = 13,600 kg/m3. We take the density of water to be ρw 

=1000 kg/m3. 

 
Solution: Starting with the pressure in the fresh water pipe (point 1) and moving 

along the tube by adding (as we go down) or subtracting (as we go up) the ρgh 

terms until we reach the sea water pipe (point 2), and setting the result equal to P2 

gives 

 

𝑃1 + 𝜌𝑤𝑔ℎ𝑤 − 𝜌𝐻𝑔𝑔ℎ𝐻𝑔 − 𝜌𝑎𝑖𝑟𝑔ℎ𝑎𝑖𝑟 + 𝜌𝑠𝑒𝑎𝑔ℎ𝑠𝑒𝑎 = 𝑃2 
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Rearranging and neglecting the effect of air column on pressure 

𝑃1 − 𝑃2 = −𝜌𝑤𝑔ℎ𝑤 + 𝜌𝐻𝑔𝑔ℎ𝐻𝑔 + 𝜌𝑎𝑖𝑟𝑔ℎ𝑎𝑖𝑟 − 𝜌𝑠𝑒𝑎𝑔ℎ𝑠𝑒𝑎  

 

𝑃1 − 𝑃2 = 𝑔(𝜌𝐻𝑔ℎ𝐻𝑔  − 𝜌𝑤ℎ𝑤 − 𝜌𝑠𝑒𝑎ℎ𝑠𝑒𝑎)  

 

𝑃1 − 𝑃2 = 9.81(13600×0.10 − 1000×0.60 − 1035×0.40)  
 

𝑃1 − 𝑃2 = 3394 𝑃𝑎  
 

Example: The gage pressure of the air in the tank shown in Fig. is measured to 

be 65 kPa. Determine the differential height h of the mercury column. We take 

the density of water to be ρw=1000 kg/m3. The specific gravities of oil and 

mercury are given to be 0.72 and 13.6, respectively. 

 
 

Solution: Starting with the pressure of air in the tank (point 1), and moving along 

the tube by adding (as we go down) or subtracting (as we go up) the ρgh terms 

until we reach the free surface of oil where the oil tube is exposed to the 

atmosphere, and setting the result equal to Patm gives, 

 

𝑃1 + 𝜌𝑤𝑔ℎ𝑤 − 𝜌𝐻𝑔𝑔ℎ𝐻𝑔 − 𝜌𝑜𝑖𝑙𝑔ℎ𝑜𝑖𝑙 = 𝑃𝑎𝑡𝑚  Rearranging, 

 

𝑃1 − 𝑃𝑎𝑡𝑚 = −𝜌𝑤𝑔ℎ𝑤 + 𝜌𝐻𝑔𝑔ℎ𝐻𝑔 + 𝜌𝑜𝑖𝑙𝑔ℎ𝑜𝑖𝑙 

 
𝑃1 𝑔𝑎𝑔𝑒

𝜌𝑤𝑔
= 𝜌𝑠,𝑜𝑖𝑙ℎ𝑜𝑖𝑙 + 𝜌𝐻𝑔ℎ𝐻𝑔 − ℎ𝑤 

 
65000

9810
= 0.72×0.75 + 13.6×ℎ𝐻𝑔 − 0.3 → ℎ𝐻𝑔 = 0.47 𝑚 
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Example: Consider a 4-m-long, 4-m-wide, and 1.5-m-high aboveground 

swimming pool that is filled with water to the rim. (a) Determine the hydrostatic 

force on each wall and the distance of the line of action of this force from the 

ground. (b) If the height of the walls of the pool is doubled and the pool is filled, 

will the hydrostatic force on each wall double or quadruple? Why? We take the 

density of water to be 1000 kg/m3 throughout. 

 

Solution: Atmospheric pressure acts on both sides of the wall of the pool, and 

thus it can be ignored in calculations for convenience. The average pressure on a 

surface is the pressure at the centroid (midpoint) of the surface, and is 

determined to be 

 

𝑃𝑎𝑣𝑒 = 𝑃𝑐 = 𝜌𝑔ℎ𝑐 = 𝜌𝑔 (
ℎ

2
) = 1000×9.81×

1.5

2
= 7357.5 𝑃𝑎 

 

Then the resultant hydrostatic force on each Wall becomes 

 

𝐹𝑅 = 𝑃𝑎𝑣𝑒𝐴 = 7357.5×4×1.5 = 44145 𝑁 

 

The line of action of the force passes through the pressure center, which is 2h/3 

from the free surface and h/3 from the bottom of the pool. Therefore, the 

distance of the line of action from the ground is 

 

𝑦𝑝 =
ℎ

3
=

1.5

3
= 0.5 𝑚 (from the bottom) 

 

If the height of the walls of the pool is doubled, the hydrostatic force 

quadruples since 

 

𝐹𝑅 = 𝜌𝑔ℎ𝑐𝐴 = 𝜌𝑔 (
ℎ

2
) (ℎ×𝑤) = 𝜌𝑔𝑤ℎ2/2 
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Example: A room in the lower level of a cruise ship has a 30-cm-diameter circular 

window. If the midpoint of the window is 5 m below the water surface, determine 

the hydrostatic force acting on the window, and the pressure center. Take the 

specific gravity of seawater to be 1.025. 

 

Solution: The specific gravity of sea water is given to be 1.025, and thus its 

density is 1025 kg/m3. The average pressure on a surface is the pressure at the 

centroid (midpoint) of the surface, and is determined to be 

 

𝑃𝑎𝑣𝑒 = 𝑃𝑐 = 𝜌𝑔ℎ𝑐 = 1025×9.81×5 = 50276 𝑃𝑎 

 

Then the resultant hydrostatic force on each Wall becomes 

 

𝐹𝑅 = 𝑃𝑎𝑣𝑒𝐴 = 𝑃𝑎𝑣𝑒[𝜋𝐷2/4] = 50276 [𝜋 0.32/4] = 3554 𝑁 

 

The line of action of the force passes through the pressure center, whose vertical 

distance from the free surface is determined from 

 

𝑦𝑃 = 𝑦𝐶 +
𝐼𝑥𝑥,𝐶

𝑦𝐶𝐴
= 𝑦𝐶 +

𝜋𝑅2/4

𝑦𝐶𝜋𝑅2
= 𝑦𝐶 +

𝑅2

4𝑦𝐶
= 5 +

0.152

4×5
= 5.0011 𝑚 ≅ 5 𝑚 

 

 
 

Example: The 500-kg load on the hydraulic lift shown in Fig. is to be raised by 

pouring oil (ρ=780 kg/m3) into a thin tube. Determine how high h should be in 

order to begin to raise the weight. 
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Solution: The cylinders of the lift are vertical. There are no leaks. Atmospheric 

pressure act on both sides, and thus it can be disregarded. Noting that pressure is 

force per unit area, the gage pressure in the fluid under the load is simply the ratio 

of the weight to the area of the lift, 

 

𝑃𝑔𝑎𝑔𝑒 =
𝑊

𝐴
=

𝑚𝑔

𝜋𝐷2/4
=

500×9.81

𝜋×1.22/4
) = 4337 𝑃𝑎 

 

The required oil height that will cause 4337 Pa of pressure rise is 

 

𝑃𝑔𝑎𝑔𝑒 = 𝜌𝑔ℎ → ℎ =
𝑃𝑔𝑎𝑔𝑒

𝜌𝑔
=

4337

780×9.81
= 0.567 𝑚 

 

Example: Pressure is often given in terms of a liquid column and is expressed as 

“pressure head.” Express the standard atmospheric pressure in terms of (a) 

mercury (SG=13.6), (b) water (SG=1.0), and (c) glycerin (SG=1.26) columns. 

Explain why we usually use mercury in manometers. 

 

Solution: The atmospheric pressure is expressed in terms of a fluid column 

height as 

 

𝑃𝑎𝑡𝑚 = 𝜌𝑔ℎ = 𝑆𝐺𝜌𝑔ℎ → ℎ =
𝑃𝑎𝑡𝑚

𝑆𝐺 𝜌ℎ
 

 

 

a) Mercury:  ℎ =
𝑃𝑎𝑡𝑚

𝑆𝐺 𝜌ℎ
=

101325

13.6×1000×9.81
= 0.759 𝑚 

 

b) Water: :  ℎ =
𝑃𝑎𝑡𝑚

𝑆𝐺 𝜌ℎ
=

101325

1×1000×9.81
= 10.33 𝑚 

 

c) Glycerin: :  ℎ =
𝑃𝑎𝑡𝑚

𝑆𝐺 𝜌ℎ
=

101325

1.26×1000×9.81
= 8.20 𝑚 
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Example: Two water tanks are connected to each other through a mercury 

manometer with inclined tubes, as shown in Fig.. If the pressure difference 

between the two tanks is 20 kPa, calculate a and u. The specific gravity of mercury 

is given to be 13.6. We take the standard density of water to be ρw =1000 kg/m3. 

 

 
 

Solution: Starting with the pressure in the tank A and moving along the tube by 

adding (as we go down) or subtracting (as we go up) the ρgh terms until we reach 

tank B, and setting the result equal to PB give 

 

𝑃𝐴 + 𝜌𝑤𝑔𝑎 + 𝜌𝐻𝑔𝑔2𝑎 − 𝜌𝑤𝑔𝑎 = 𝑃𝐵 → 𝑃𝐴 − 𝑃𝐵 = 2𝜌𝐻𝑔𝑔𝑎 

 

Rearranging and substituting the known values, 

 

𝑎 =
𝑃𝐴 − 𝑃𝐵

2𝜌𝐻𝑔𝑔
=

20000

2×13.6×1000×9.81
= 0.075 𝑚 = 7.50 𝑐𝑚 

 

From geometric considerations, 

 

26.8×𝑠𝑖𝑛𝜃 = 2𝑎 → 𝑠𝑖𝑛𝜃 =
2𝑎

26.8
=

2×7.5

26.8
= 0.560 → 𝜃 = 34.0° 

 

Example: The water side of the wall of a 100-m-long dam is a quarter circle with 

a radius of 10 m. Determine the hydrostatic force on the dam and its line of action 

when the dam is filled to the rim. We take the density of water to be 1000 kg/m3 

throughout. 



34 

 

 
 

Solution: We consider the free body diagram of the liquid block enclosed by the 

circular surface of the dam and its vertical and horizontal projections. The 

hydrostatic forces acting on the vertical and horizontal plane surfaces as well as 

the weight of the liquid block are: 

 

Horizontal force on vertical surface: 

𝐹𝐻 = 𝐹𝑥 = 𝑃𝑎𝑣𝑒𝐴 = 𝜌𝑔ℎ𝑐𝐴 = 𝜌𝑔 (
𝑅

2
) 𝐴 

𝐹𝐻 = 𝜌𝑔 (
𝑅

2
) 𝐴 = 1000×9.81× (

10

2
) (10×100) = 49050000 𝑁 

 

Vertical force on horizontal surface is zero since it coincides with the free surface 

of water. The weight of fluid block per m length is 

 

𝐹𝑉 = 𝑊 = 𝜌𝑔∀= 𝜌𝑔 [𝑤×
𝜋𝑅2

4
] = 1000×9.81× [100×𝜋×

102

4
]

= 77047560 𝑁 

Then the magnitude and direction of the hydrostatic force acting on the surface of 

the dam become 

 

𝐹𝑅 = √𝐹𝐻
2 + 𝐹𝑉

2 = √490500002 + 770475602 = 91335804 𝑁 

 

𝑡𝑎𝑛𝜃 =
𝐹𝑉

𝐹𝐻
=

77047560

49050000
→ 𝜃 = 57.5° 

 

Therefore, the line of action of the hydrostatic force passes through the center of 

the curvature of the dam, making 57.5°downwards from the horizontal. 
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Example: The volume and the average density of an irregularly shaped body are 

to be determined by using a spring scale. The body weighs 7200 N in air and 4790 

N in water. Determine the volume and the density of the body. State your 

assumptions. We take the density of water to be 1000 kg/m3.  The buoyancy force 

in air is negligible. The body is completely submerged in water. 

 

Solution: The mass of the body is  𝑚 =
𝑊𝑎𝑖𝑟

𝑔
=

7200

9.81
= 733.9 𝑘𝑔 

The difference between the weights in air and in water is due to the buoyancy 

force in water, 

𝐹𝐵 = 𝑊𝑎𝑖𝑟 − 𝑊𝑤𝑎𝑡𝑒𝑟 = 7200 − 4790 = 2410 𝑁  Noting that 𝐹𝐵 = 𝜌𝑤𝑎𝑡𝑒𝑟𝑔∀, 
the volume of  the body is determined to be 

 

∀=
𝐹𝐵

𝜌𝑤𝑔
=

2410

1000×9.81
= 0.2457 𝑚3.  Then the density of the body becomes 

 

𝜌 =
𝑚

∀
=

733.9

0.2457
= 2987 𝑘𝑔/𝑚3 

 

Example: A water tank is being towed by a truck on a level road, and the angle 

the free surface makes with the horizontal is measured to be 15°. Determine the 

acceleration of the truck. The road is horizontal so that acceleration has no vertical 

component (az = 0). Effects of splashing, breaking, driving over bumps, and 

climbing hills are assumed to be secondary, and are not considered. The 

acceleration remains constant. 

 

Solution: We take the x-axis to be the direction of motion, the z-axis to be the 

upward vertical direction. The tangent of the angle the free surface makes with 

the horizontal is 

 

𝑡𝑎𝑛𝜃 =
𝑎𝑥

𝑔 + 𝑎𝑧
→ 𝑎𝑥 = (𝑔 + 𝑧)𝑡𝑎𝑛𝜃 = (9.81 + 0)𝑡𝑎𝑛15° = 2.63 𝑚/𝑠2 
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Example: A 40-cm-diameter, 90-cm-high vertical cylindrical container is 

partially filled with 60-cm-high water. Now the cylinder is rotated at a constant 

angular speed of 120 rpm. Determine how much the liquid level at the center of 

the cylinder will drop as a result of this rotational motion. The increase in the 

rotational speed is very slow so that the liquid in the container always acts as a 

rigid body. The bottom surface of the container remains covered with liquid 

during rotation (no dry spots) 

 

Solution:  

 

𝑧 =
𝑟2𝑤2

2𝑔
=

0.202×(2𝜋𝑛/60)2

2×9.81
= 0.32 𝑚 

 

𝑧𝑠 = ℎ0 − 𝑧 = 0.60 −
0.32

2
= 0.44 𝑚 

 

Therefore, the drop in the liquid level at the center of the cylinder is 

 

∆ℎ = ℎ0 − 𝑧𝑠 = 0.60 − 0.44 = 0.16 𝑚 or ∆ℎ =
𝑧

2
=

0.322

2
= 0.16 
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Example: A fish tank that contains 40-cm-high water is moved in the cabin of an 

elevator. Determine the pressure at the bottom of the tank when the elevator is (a) 

stationary, (b) moving up with an upward acceleration of 3 m/s2, and (c) moving 

down with a downward acceleration of 3 m/s2. We take the density of water to be 

1000 kg/m3. 

 

Solution: The motion of a fish tank in the cabin of an elevator is considered. The 

pressure at the bottom of the tank when the elevator is stationary, moving up with 

a specified acceleration, and moving down with a specified acceleration is to be 

determined. The pressure difference between two points 1 and 2 in an 

incompressible fluid is given by  

 

𝑃2 − 𝑃2 = −𝜌𝑎𝑥(𝑥2 − 𝑥1) − 𝜌(𝑔 + 𝑎𝑧)(𝑧2 − 𝑧1) → 𝑃2 − 𝑃2

= 𝜌(𝑔 + 𝑎𝑧)(𝑧2 − 𝑧1) 

 

Since ax=0. Taking point 2 at the free surface and point 1 at the tank bottom. We 

have P2=Patm and z2-z1 =h and thus  

 

P1gage=Pbottom=ρ(g+az)h 

 



38 

 

 
(a) Tank stationary: We have az = 0, and thus the gage pressure at the tank 

bottom is 

 

Pbottom=ρgh=1000×9.81×0.4=3924 Pa 

 

(b) Tank moving up: We have az = +3 m/s2, and thus the gage pressure at the 

tank bottom is 

 

Pbottom=ρ(g+az)hB=1000×(9.81+3)×0.4=5124 Pa 

 

(c) Tank moving down: We have az = -3 m/s2, and thus the gage pressure at the 

tank bottom is 

 

Pbottom=ρ(g+az)hB=1000×(9.81-3)×0.4=2724 Pa 

 

Note that the pressure at the tank bottom while moving up in an elevator is almost 

twice that while moving down, and thus the tank is under much greater stress 

during upward acceleration. 

 

Example: An air-conditioning system requires a 20-m-long section of 15-cm-

diameter ductwork to be laid underwater. Determine the upward force the water 

will exert on the duct. 

Take the densities of air and water to be 1.3 kg/m3 and 1000 kg/m3, respectively. 

The diameter given is the outer diameter of the duct (or, the thickness of the duct 

material is negligible). The weight of the duct and the air in is negligible. 

 

Solution:  The density of air is given to be ρ = 1.30 kg/m3. We take the density of 

water to be 1000 kg/m3. Noting that the weight of the duct and the air in it is 
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negligible, the net upward force acting on the duct is the buoyancy force exerted 

by water. The volume of the underground section of the duct is  

 
 

∀= 𝐴𝐿 = (
𝜋𝐷2

4𝐿
) = [𝜋×

0.152

4
] ×20 = 0.3534 𝑚3 

 

Then the buoyancy force becomes 

 

𝐹𝐵 = 𝜌𝑔∀= 1000×9.81×0.3534=3467 Pa 

 

Example: Balloons are often filled with helium gas because it weighs only about 

one-seventh of what air weighs under identical conditions. The buoyancy force, 

which can be expressed as 𝐹𝑏 = 𝜌𝑎𝑖𝑟𝑔∀𝑏𝑎𝑙𝑙𝑜𝑜𝑛, will push the balloon upward.  If 

the balloon has a diameter of 10 m and carries two people, 70 kg each. Assume 

the density of air is ρ=1.16 kg/m3, and neglect the weight of the ropes and the 

cage. a) Determine the acceleration of the balloon when it is first released. b) 

Determine the maximum amount of load, in kg, the balloon. 

 

Solution: A helium balloon tied to the ground carries 2 people. The acceleration 

of the balloon when it is first released is to be determined. 
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a) The density of air is given to be ρ = 1.16 kg/m3. The density of helium gas is 

1/7th of this. The buoyancy force acting on the balloon is 

 

∀𝑏𝑎𝑙𝑙𝑜𝑜𝑛=
4𝑟3

3
=

4𝜋53

3
= 523.6 𝑚3 

 

𝐹𝐵 = 𝜌𝑎𝑖𝑟𝑔∀𝑏𝑎𝑙𝑙𝑜𝑜𝑛= 1.16×9.81×523.6 = 5958.4 𝑁 

 

The total mass is  𝑚𝐻𝑒 = 𝜌𝐻𝑒∀=
1.16

7
523.6 = 86.8 𝑘𝑔 

 

𝑚𝑡𝑜𝑡𝑎𝑙 = 𝑚𝐻𝑒 + 𝑚𝑝𝑒𝑜𝑝𝑙𝑒 = 86.8 + 2×70 = 226.8 𝑘𝑔 

 

The total weight is W=mtotalg=226.8×9.81=2224.9 N 

 

Thus the net force acting on the balloon is Fnet=FB-W=5958.6-2224.5=3733.5 N 

 

Then the acceleration becomes 𝑎 =
𝐹𝑛𝑒𝑡

𝑚𝑡𝑜𝑡𝑎𝑙
=

3733.5

226.8
= 16.5 𝑚/𝑠2 

 

This is almost twice the acceleration of gravity – aerodynamic drag on the balloon 

acts quickly to slow down the acceleration. 

 

b) In the limiting case, the net force acting on the balloon will be zero. That is, the 

buoyancy force and the weight will balance each other:  

 

W=mg=FB 

 

𝑚𝑡𝑜𝑡𝑎𝑙 =
𝐹𝐵

𝑔
=

5958.4

9.81
= 607.4 𝑘𝑔 

 

Thus mpeople=mtotal-mHe=607.4-86.8=520.6 kg=521 kg 

 

Example: The basic barometer can be used as an altitudemeasuring device in 

airplanes. The ground control reports a barometric reading of 753 mmHg while 

the pilot’s reading is 690 mmHg. Estimate the altitude of the plane from ground 

level if the average air density is 1.20 kg/m3. The density of mercury is given to 

be 13.600 kg/m3. 

 

Solution: Atmospheric pressures at the location of the plane and the ground 

level are 

 

Pplane=(ρgh)plane=13600×9.81×0.690=92060 Pa 
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Pground=(ρgh)ground=13600×9.81×0.753=100460 Pa 

 

Taking an air column between the airplane and the ground and writing a force 

balance per unit base area, we obtain  

 

Wair / A=Pground – Pplane      (ρgh)air = Pground – Pplane 

 

1.20×9.81×h=100460-92060=8400  

 

h=714 m. Obviously, a mercury barometer is not practical on an airplane – an 

electronic barometer is used instead. 

 
Example: A vertical, frictionless piston–cylinder device contains a gas at 500 

kPa. The atmospheric pressure outside is 100 kPa, and the piston area is 30 cm2. 

Determine the mass of the piston. 

 

Solution: Drawing the free body diagram of the piston and balancing the 

vertical forces yield  W=PA-Patm A,         mg=(P-Patm)A    

 

m×9.81=(500000-100000)×0.003 ise m=122 kg 

 

The gas cannot distinguish between pressure due to the piston weight and 

atmospheric pressure – both “feel” like a higher pressure acting on the top of the 

gas in the cylinder. 
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Example: A glass tube is attached to a water pipe, as shown in Fig.. If the water 

pressure at the bottom of the tube is 115 kPa and the local atmospheric pressure 

is 92 kPa, determine how high the water will rise in the tube, in m. Assume g= 

9.8 m/s2 at that location and take the density of water to be 1000 kg/m3. 

 
Solution: A glass tube open to the atmosphere is attached to a water pipe, and the 

pressure at the bottom of the tube is measured. It is to be determined how high the 

water will rise in the tube. The pressure at the bottom of the tube can be expressed 

as 

 

P=Patm+(ρgh)tube  Solving for h,  ℎ =
𝑃−𝑃𝑎𝑡𝑚

𝜌𝑔
=

115000−92000

1000×9.8
= 2.35 𝑚 

 

Example: The pressure of water flowing through a pipe is measured by the 

arrangement shown in Fig. For the values given, calculate the pressure in the pipe. 

 
Solution: The specific gravity of gage fluid is given to be 2.4. We take the 

standard density of water to be ρw= 1000 kg/m3. 

 

Starting with the pressure indicated by the pressure gage and moving along the 

tube by adding (as we go down) or subtracting (as we go up) the ρgh terms until 

we reach the water pipe, and setting the result equal to Pwater give 
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𝑃𝑔𝑎𝑔𝑒 + 𝜌𝑤𝑔ℎ𝑤1 − 𝜌𝑔𝑎𝑔𝑒𝑔ℎ𝑔𝑎𝑔𝑒 − 𝜌𝑤𝑔ℎ𝑤2 = 𝑃𝑤𝑎𝑡𝑒𝑟 

 

𝑃𝑤𝑎𝑡𝑒𝑟 = 𝑃𝑔𝑎𝑔𝑒 + 𝜌𝑤𝑔(ℎ𝑤1 − 𝑆𝐺𝑔𝑎𝑔𝑒ℎ𝑔𝑎𝑔𝑒 − ℎ𝑤2) = 

 

𝑃𝑤𝑎𝑡𝑒𝑟 = 𝑃𝑔𝑎𝑔𝑒 + 𝜌𝑤𝑔(ℎ𝑤1 − 𝑆𝐺𝑔𝑎𝑔𝑒𝐿1𝑠𝑖𝑛𝜃 − 𝐿2𝑠𝑖𝑛𝜃) 

 

Noting that sinθ=8/12=0.6667 and substituting, 

  

𝑃𝑤𝑎𝑡𝑒𝑟 = 30000 + 1000×9.81[0.50 − 2.4×0.06×0.6667 − 0.06×0.6667]
= 33600 𝑃𝑎 

 

𝑃𝑤𝑎𝑡𝑒𝑟 = 33600 𝑃𝑎 

 

Therefore, the pressure in the gasoline pipe is 3.6 kPa over the reading of the 

pressure gage. 

 

Example: A 3-m-high, 6-m-wide rectangular gate is hinged at the top edge at A 

and is restrained by a fixed ridge at B. Determine the hydrostatic force exerted on 

the gate by the 5-m-high water and the location of the pressure center. Determine 

the hydrostatic force exerted on the gate for a total water height of 2 m. 

 
 

Solution: The average pressure on a surface is the pressure at the centroid 

(midpoint) of the surface, and multiplying it by the plate area gives the resultant 

hydrostatic force on the gate, 

 

FR=PaveA=ρghCA=1000×9.81×3.5×3×6=206010 N 

 

𝑦𝑃 = 𝑠 +
𝑏

2
+

𝑏2

12(𝑠 +
𝑏
2

)
= 2 +

3

2
+

32

12(2 +
3
2

)
= 3.71 𝑚 
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b) The hydrostatic force exerted on the gate for a total water height of 2 m. The 

average pressure on a surface is the pressure at the centroid (midpoint) of the 

surface, and multiplying it by the wetted plate area gives the resultant 

hydrostatic force on the gate, 

 

FR=PaveA=ρghCA= 1000×9.81×1×(2×6)=117720 N 

 

The vertical distance of the pressure center from the free surface of water is 

 

𝑦𝑃 =
2ℎ

3
=

2×2

3
= 1.33 𝑚 
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