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4.  ELEMENTARY FLUID DYNAMICS -THE BERNOULLI EQUATION 

 

4.5. Examples of Use of the Bernoulli Equation 

 

In this section we illustrate various additional applications of the Bernoulli 

equation. Between any two points, (1) and (2), on a streamline in steady, inviscid, 

incompressible flow the Bernoulli equation can be applied in the form. 

 

𝑃1 +
1

2
𝜌𝑉1

2 + 𝛾𝑧1 = 𝑃2 +
1

2
𝜌𝑉2

2 + 𝛾𝑧2 

 

Obviously if five of the six variables are known, the remaining one can be 

determined. In many instances it is necessary to introduce other equations, such 

as the conservation of mass. 

 

4.5.1.Free Jet 

 

One of the oldest equations in fluid mechanics deals with the flow of a liquid from 

a large reservoir. A modern version of this type of flow involves the flow of coffee 

from a coffee urn as indicated by the below Fig.4.8. The exit pressure for an 

incompressible fluid jet is equal to the surrounding pressure.  

 

 
Figure 4.8. The flow of coffee from a coffee urn 

 

The basic principles of this type of flow are shown in the below Fig.4.9 where a 

jet of liquid of diameter d flows from the nozzle with velocity V. (A nozzle is a 

device shaped to accelerate a fluid.). Application of the above Equation between 

points (1) and (2) on the streamline shown gives 

 

𝑉 = √2𝑔ℎ 
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Which is the modern version of a result obtained in 1643 by Torricelli 11608–

16472, an Italian physicist. 

 

 
Figure 4.9. Vertical flow from a tank 

 

For the horizontal nozzle of Fig.4.10a, the velocity of the fluid at the centerline, 

V2 will be slightly greater than that at the top,V1,  and slightly less than that at the 

bottom,V3, due to the differences in elevation. In general, 𝑑 ≪ ℎ as shown in 

Fig.4.10b and we can safely use the centerline velocity as a reasonable “average 

velocity.”  From another assumption a velocity factor can be used for real velocity. 

 

Velocity factor    𝐶𝑣 =
𝑟𝑒𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
=

𝑉𝑟

𝑉𝑡
=

𝑉𝑟

√2𝑔ℎ
 

 

If the exit is not a smooth, well-contoured nozzle, but rather a flat plate as shown 

in Fig.4.10c, the diameter of the jet, dj,  will be less than the diameter of the hole, 

dh. This phenomenon, called a vena contracta effect, is a result of the inability of 

the fluid to turn the sharp 90° corner indicated by the dotted lines in the figure. 

 

 
Figure 4.10. Horizontal flow from a tank (a and b) and Vena contracta effect 

for a sharp-edged orifice (c). 
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The vena contracta effect is a function of the geometry of the outlet. Some typical 

configurations are shown in the below Fig.4.11 along with typical values of the 

experimentally obtained contraction coefficient, 𝐶𝑐 =
𝐴𝑗

𝐴ℎ 
= (

𝑑𝑗

𝑑ℎ
)2. Where Aj and 

Ah are the areas of the jet at the vena contracta and the area of the hole, 

respectively. 𝐴𝑗 =
𝜋𝑑𝑗

2

4
     and      𝐴ℎ =

𝜋𝑑ℎ
2

4
. Then the flow rate for free jet  𝑄 =

𝐶𝑣𝐶𝑐𝐴ℎ√2𝑔ℎ = 𝐶𝑑𝐴ℎ√2𝑔ℎ .  Cd=CcCv can be taken to be 0.62 for free jet. 

 

 
Figure 4.11. Typical flow patterns and contraction coefficients for various 

round exit configurations. (a) Knife edge, (b) Well rounded, (c) Sharp edge, 

(d) Re-entrant. 

 

4.5.2. Confined Flows 

 

In many cases the fluid is physically constrained within a device so that its 

pressure cannot be prescribed a priori as was done for the free jet examples above. 

Such cases include nozzles and pipes of variable diameter for which the fluid 

velocity changes because the flow area is different from one section to another. 

For these situations it is necessary to use the concept of conservation of mass (the 

continuity equation) along with the Bernoulli equation. For the needs of this 

chapter we can use a simplified form of the continuity equation obtained from the 

following intuitive arguments. Consider a fluid flowing through a fixed volume 

(such as a syringe) that has one inlet and one outlet as shown in Fig.4.12a. If the 

flow is steady so that there is no additional accumulation of fluid within the 

volume, the rate at which the fluid flows into the volume must equal the rate at 

which it flows out of the volume (otherwise, mass would not be conserved). 
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Figure 4.12. (a) Flow through a syringe. (b) Steady flow into and out of a 

volume. 

 

The continuity equation for incompressible flow can be given as Q1=Q2 or 

A1V1=A2V2. Where; Q1 is the inlet flow rate, Q2 is the outlet flow rate, A1 is the 

inlet cross section area, A2 is the outler cross section area, V1 is the inlet velocity 

of fluid, V2 is the outlet velocity of fluid.  

 

Example: Air flows steadily from a tank, through a hose of diameter and exits to 

the atmosphere from a nozzle of diameter as shown in Fig.. The pressure in the 

tank remains constant at 3.0 kPa (gage) and the atmospheric conditions are 

standard temperature and pressure. Determine the flowrate and the pressure in the 

hose. 

 

 
 

Solution:  

 

𝑃1 +
1

2
𝜌𝑉1

2 + 𝛾𝑧1 = 𝑃2 +
1

2
𝜌𝑉2

2 + 𝛾𝑧2 = 𝑃3 +
1

2
𝜌𝑉3

2 + 𝛾𝑧3 

 

With the assumption that z1=z2=z3 (horizontal hose ), V1=0 (large tank), and 

P3=0 (free jet), this becomes 

 

𝑉3 = √
2𝑃1

𝜌
    and     𝑃2 = 𝑃1 −

1

2
𝜌𝑉2

2  (2) 

 

The density of the air in the tank is obtained from the perfect gas law, using 

standard absolute pressure and temperature, as 
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𝜌 =
𝑃1

𝑅𝑇1
==

[3000 + 101000]

286.9×(15 + 273)
= 1.26 𝑘𝑔/𝑚3 

Thus, we find that  

 

𝑉3 = √
2×3000

1.26
= 69 𝑚/𝑠 

 

𝑄 = 𝐴3𝑉3 =
𝜋𝑑2

4
𝑉3 =

𝜋

4
(0.01)2×69 = 0.00542 𝑚3/𝑠 

 

The pressure within the hose can be obtained from Eq. 1 and the continuity 

equation A2V2=A3V3 Hence  

 

𝑉2 =
𝐴3𝑉3

𝐴2
= (

𝑑

𝐷
)2𝑉3 = (

0.01

0.03
)2(69) = 7.67 𝑚/𝑠 

 

And  𝑃2 = 3000 −
1

2
×1.26×7.67 = 2963 𝑃𝑎 

 

In general, an increase in velocity is accompanied by a decrease in pressure. For 

example, the velocity of the air flowing over the top surface of an airplane wing 

is, on the average, faster than that flowing under the bottom surface. Thus, the net 

pressure force is greater on the bottom than on the top—the wing generates a lift. 

 


