

Writing Workouts with Energy Systems

Background

- When:

- After planning your season, week by week
- Why:
- To match your goals to the physiological state and development of the athlete
- How
- Create sets where the number repeats, the speed achieved and the amount of rest given will determine the energy system being used

TRAINING CATEGORIES

Energy System	Pulse Rate	Sharps Stress Score*	Work:Rest Ratio	\% Velocity	Lactate	Set Duration	Suggested Repeat Distances	Set Examples
REC	UP TO 120	0	CHOICE	$\begin{array}{\|c\|} \hline 80 \% \\ \text { THRESHOLD } \\ \text { SPEED } \\ \hline \end{array}$	0 TO 2MM/L	ANY	ANY	$\begin{aligned} & 3 \times 400 \\ & \text { CHOICE } \end{aligned}$
EN1	120-150	2	REST 10-30	95\%THRESH OLD SPEED	1 TO 3	$\begin{gathered} 15 \text { TO } 60+ \\ \text { MIN } \end{gathered}$	300 TO 1,000	4 TO 8×600
EN2	140-170	2	REST 10-40	THRESHOLD ENDURANCE SPEED	3 TO 5	$\underset{\text { MIN }}{15 \text { TO } 60+}$	100 TO 500	$\begin{gathered} 6 \text { TO } 10 \times \\ 400 \end{gathered}$
EN3	160-180	6	$\begin{array}{\|c} 20 \text { SEC REST } \\ \text { TO } 1: 1 \end{array}$	104 TO 107\% THRESHOLD SPEED	4 TO 8	15 TO 30 MIN	50 TO 300	$\begin{aligned} & 5 \text { TO } 10 x \\ & 200 \end{aligned}$
SP1	MAX	8	MAX	USE A \% OF MAXIMUM VELOCITY	6 TO 12	?	50 TO 200	$\begin{aligned} & 6 \text { TO } 10 \mathrm{X} \\ & 150 \end{aligned}$
SP2	MAX	8	MAX	USE A \% OF MAXIMUM VELOCITY	10 TO 18	?	50 TO 100	4 T0 6×100
SP3	MAX	4	MAX	100 TO 110\% MAXIMUM VELOCITY	2 TO 3	?	10 TO 25	4 TO 8×25

Energy
 Systems

Writing a
Workout

Great Britain

Training Categories

Training Zone	Sweetenham \& Atkinson	Description	$\begin{gathered} \text { HR } \\ \text { (BBM) } \end{gathered}$	$\begin{gathered} \text { RPE } \\ (6-20) \end{gathered}$	Olbrecht
1	A1	Low intensity aerobic swimming. Used for warm up, swim down and skill development.	>50	<9	AERC
	A2	Base aerobic training. Improves fitness and enhances Lactate Removal.	40-50	10-12	
2	AT	Maximal Lactate Steady State. Improves the ability to swim with equilibrium of Lactate Production \& Removal.	20-30	14-15	
3	MVO2	High intensity work at approximately VO2max (the highest rate of oxygen consumption attainable during maximal or exhaustive exercise). Improves VO2 max and Aerobic Power.	5-20	17-19	AERP
4	LP	Training intensity results in the maximal speed of lactate build up. Enhances the ability to produce lactic acid.	0-10	17-19	ANC
	LT	High intensity work with medium rest to improve buffering. Used to develop the ability to tolerate lactic acid in the muscles.	0-10	19-20	ANP
5	Basic Speed	Sprint swimming. Used to improve ATP-PC energy production and fast-twitch muscle fibre recruitment.	N/A	N/A	SPRINT

Energy
 Systems

Writing a

Workout

Guidelines for Interval Training Sets

Distance	Mid-Distance	Sprint	Energy System
$3000-5000$	$3000-4000$	$2000-3000$	EN1
$2000-4000$	$2000-3000$	$1500-2400$	EN2
$1500-3000$	$1200-2000$	$800-1600$	EN3
$800-1200$	$600-1000$	$600-800$	SP1
$400-800$	$400-800$	$400-600$	SP2
$100-200$	$100-300$	$100-300$	SP3

Energy

Systems

Writing a
Workout

Conclusion

807n
 EN1 (Aerobic)

- Below Threshold
- Repeats
- 200 meters and up
- Rest Times
- 20-30 Secs
- Heart Rate
- 130-150 BPM during swimming

EN1 (Aerobic)

- Goal

- To swim amounts just below Anaerobic Threshold (AT) and use fat metabolism as energy
- Sets can be at least 30 minutes for top juniors, longer for accomplished swimmers
- Partial recovery and progressive stress is reflected in HR
- Results
- Increased general endurance and O_{2} capacity for all muscle fibers (mainly Slow Twitch)
- Allowing better Glycogen \& ATP storage in ST muscle
- Note
- More work for distance, less for sprinters
- Repeats
- 100 m to 400 m
- Rest Times
- 20 to 50 seconds or longer
- Heart Rate
- 165 to 180 BPM during swimming

EN2 (LA Steady State)

- Goal
- To achieve lactate steady state velocity
- Threshold but below VO_{2} Max
- Results
- Improved ability to swim with an equilibrium of lactate production and removal
- Note
- Average time for the set of repeats is the determinant of the training effect
- As the set improves, so does the average race pace
- There should be caution as to the limits of this training, especially with sprinters

Sprint Training (SP1, SP2)

- Repeats

- 10-50 meters
- Rest
- Long rest, to return towards rested state
- Work:Rest ratio= 1:6+
- 30 seconds for 10-15 meters
- 40+ seconds for 25 s
- 2-3+ minutes for 50 s and 100 s

Sprint Training (SP1, SP2)

- Goal

- To improve maximum speed
- Recruit new Fast Twitch Muscles
- Improve buffering FT Muscles (recovery)
- Improve ability to use speed for multiple bouts
- Note
- Improve rested speed not fatigued speed
- $\quad \mathrm{SP}^{3}$ special training

Common Set Types \&

 Training Effects- Short rest intervals
- Descending \& ascending
- Mixed sets \& rotations
- Long repeats \& sprints together

Things to Consider When Planning Workouts

- Biological Age
- Early maturers achieve shorter distance times earlier due to early AN Capacity
- Late maturers handle aerobic load better
- Gender
- Difference in flotation ability affects cardiopulmonary system and a subsequent difference in HR
- Body Type
- Ratio between arms, legs and torso
- Body weight of each will be a factor is performance in both aerobic and anaerobic sets
- Training History
- Previous training defines current physiological makeup of an athlete
- Athletes with limited aerobic background will required more \& different stimulation
- Others may respond to initial anaerobic stimulation almost immediately for Workout Creation

Energy System	Duration of Set	Repeat Distance	Rest	HR	LA
EN1	15-90 min	300-4000	10-30s	50 BBM	1-3 LA
EN2	15-50 min	100-2000	10-40s	40-30 BBM	2-3 LA
EN3	8-30 min	100-800	30-90s	30-20 BBM	4-10 LA
SP1	5-20 min	50-200	1:1-1:2 W:R	Max HR	10-16 LA
SP2	5-10	25-100	1:2-1:6 W:R	Max HR	10-20 LA

Energy
Systems

Writing a
Workout

82 Fn
 Writing a Set: Part 1

- What type of adaptation are you targeting?
- Choose and energy category
- How long do you want the set to last?
- How far is each repeat?
- How many repeats (similar to \#2)?

Writing a Set: Part 2

- How much rest?
- Consider the speed you want, the physiological response to your swimmer, and the adaptation that you want to cause or extend
- Then choose the amount of rest you require
- Set the Intensity
- Tell the swimmer the desired pace or effect (HR) desired
- Set the requirement for all aspects (beginning, end \& average) of the set
- Convert the desired rest into a send-off interval

Overview

82 Fus
 Writing a Set: Part 3

REMEMBER
All training can have secondary effects

Some Pre-Workout Rules and Ideas

- Warmup
- Recovery from last workout/EN1
- Pre set?
- Main set
- AT, VO_{2} Max, SP
- Warm down
- Lactate recovery

Sample Weekly Plan: Distance Swimmers

	MON	TUES	WED	THUR	FRI	SAT	SUN
AM	EN2 + EN3 kicking	Best Stroke EN1	Off	Rec. \& drills EN1	Rec. EN1 and Kick	EN3 Main Training	Off
PM	Rec. \& SP3	EN3 Main Training	EN1 \& Rec.	IM or Best Stroke SP1	EN1 and EN2 Drills	Off	Off

Overview

Energy
 Systems

Write Your Own

Write your own workout!

Conclusion

Questions?

