

CLASSIFICATION OF BACTERIA

Istar Dolapci, MD, PhD Medical Microbiology Department

Objectives of today's class

To describe the classification of bacteria

&

To describe the bacterial properties used in classification

Key Points

Why do we need bacterial classification?

How do we classify the bacteria?

Time span	Classification is mainly based on
Late 19th century	Morphology, Growth requirements, Pathogenic potential
1900-1960	Morphology, Physiology, Biochemistry
1960-1980	Chemotaxonomy, Numerical taxonomy, DNA-DNA Hybridization
1980-today	Genotypic Analyses, Multi-Locus Sequence Analyses, Average Nucleotide Identity, Whole Genome Analysis

Basis of classification

Phenotypic classification

- Morphological
- Anatomical
- Staining
- Cultural characteristics
- Nutrition / Metabolism
- Environmental factors
- Biochemical reactions
- Antigenic structure etc.

Genotypic classification

- Ribosomal RNA (rRNA) sequence analysis
- Universal phylogenetic tree
- DNA-DNA hybridization
- G+C content

Phylogenetic Tree

Phenotypic classification Morphological

Bacteria can be classified into several groups on morphological basis:

- 1. Cocci
- 2. Bacilli
- 3. Spirals
 - 1. Vibrio
 - 2. Spirilla
 - 3. Spirochaetes
- 4. Actinomycetes
- 5. Mycoplasmas
- 6. Rickettsiae and
- 7. Chlamydiae

Shapes of Bacteria

Morphological classification

- These are spherical or oval cells. Based on the arrangement of individual organisms they can be described as:
 - □ Monococci (Cocci in singles) Monococcus spp.
 - Diplococci (Cocci in pairs) Streptococcus pneumoniae
 - Staphylococci (Cocci in grape-like clusters) -Staphylococcus aureus
 - □ Streptococci (Cocci in chains) Streptococcus pyogenes
 - Tetrad (Cocci in group of four) Micrococcus spp.
 - □ Sarcina (Cocci in group of eight)

Morphological classification BACILLI

- These are rod-shaped bacteria. Based on the arrangement of organisms, they can be described as:
 - 🗆 Diplobacilli
 - 🗆 Streptobacilli
 - 🗆 Palisades
 - Chinese-letter form
 - 🗆 Coccobacilli

Morphological classification

ACTINOMYCETES

- These are rigid organisms like cocci and bacilli
- The characteristic shape is due to the presence of rigid cell wall..
- They are branching filamentous bacteria.

Morphological classification

Mycoplasmas

- These bacteria lack in rigid cell wall (cell wall lacking) and are highly pleomorphic and of indefinite shape..
- They occur in round or oval bodies and in interlacing filaments..

Rickettsiae and Chlamydiae

 These are very small, obligate parasites, and at one time were considered closely related to the viruses.. Now, these are regarded as bacteria..

Based on anatomical features

- Capsule
 - **Capsulate** Streptococcus pneumoniae
 - Non-capsulate Viridans streptococci
- Flagella
 - 🗆 Flagellate -
 - Monotrichous
 - Lophotrichous
 - Amphitrichous
 - Peritrichous
 - Aflagellate Shigella spp.
- Spore
 - Spore-forming Bacillus spp.
 - Non-sporing Escherichia coli

Based on anatomical features Capsule

Encapsulated Bacteria

- Capsules serves as antiphagocytic virulence factor
- Positive Quellung reaction capsule swells when specific anticapsular antisera is added
- Examples:
 - 🗆 Klebsiella pneumoniae
 - 🗆 Salmonella
 - Streptococcus pneumoniae
 - Haemophilus influenzae type B
 - Neisseria meningitidis

Based on anatomical features Flagella

- A. With flagella
- 1. Monotrichous (single polar flagellum) : Vibrio cholerae
- 2. Lophotrichous (multiple polar flagella) : Spirilla, Barthonella baciliformis etc.
- 3. Peritrichous (flagella distributed over the entire cell) : *Salmonella, E. coli etc.*
- 4. Amphitrichous (single flagellum at both ends) : Spirillum minus
- B. Without flagella
- These are called Atrichous bacteria.

			Sind
SEM 1.5 µm	SEM 0.8 µm	SEM 1.5 µm	SEM 4 µm
(a) Peritrichous	(b) Monotrichous and polar	(c) Lophotrichous and polar	(d) Amphitrichous and polar

© Elsevier. Murray: Medical Microbiology 5e - www.studentconsult.com

Clostridium tetani Bacteria are gram-postive rods or bacilli with terminal spores that cause tetanus in humans, spore

Spores Terminal Central Subterminal

Based on staining

- GRAM'S STAIN
 - Gram-positive cocci -Staphylococcus aureus
 - Gram-negative cocci -Neisseria gonorrhoeae
 - □ Gram-positive rods -Clostridium spp.
 - Gram-negative rods -Escherichia coli
- ACID FAST STAIN
 - Acid-fast bacilli Mycobacterium tuberculosis
 - Non-acid-fast bacilli -Staphylococcus aureus

Principle of Gram staining procedure

Copyright © 2009 by Mosby, an imprint of Elsevier, Inc. All rights reserved.

© Elsevier. Murray: Medical Microbiology 5e - www.studentconsult.com

Cell wall of Gram Positive vs Gram Negative Bacteria

Membrane Characteristics of Gram-Positive and Gram-Negative Bacteria

Characteristic	Gram-Positive	Gram-Negative
Outer membrane	-	+
Cell wall	Thicker	Thinner
Lipopolysaccharide	-	+
Endotoxin	-	+
Teichoic acid	Often present	-
Sporulation	Some strains	-
Capsule	Sometimes present	Sometimes present
Lysozyme	Sensitive	Resistant
Antibacterial activity of penicillin	More susceptible	More resistant
Exotoxin production	Some strains	Some strains

Cell Wall of Gram Negative Organism

Cell Wall of Gram Positive Organism

Acid fast bacteria CELL WALL OF ACID FAST BACTERIA

<u>Ziehl-Neelsen Stain (ZN-Stain)</u> <u>Procedure</u>

Application of heat (mordant)

Application of Acid Alcohol (decolorizer)

Application of Methylene Blue (counter stain)

Acid fast staining

Examples of Acid-fast bacilli:

- Mycobacterium tuberculosis
- Mycobacterium leprae
- Nocardia asteroides
- Actinomycetes

Based on Cultural Characteristics

- Extra growth factor requirements
 Fastidious Hemophilus influenzae
 - Non-fastidious Escherichia coli

Blood agar is an **enriched**, bacterial growth **medium**. **Fastidious** organisms, such as streptococci, do not grow well on ordinary growth media

- Hemolysis on Sheep Blood Agar
 - Alpha-hemolysis Streptococcus pneumoniae
 - Beta-hemolysis Streptococcus pyogenes
- Utilization of carbohydrates
 - Oxidative Micrococcus
 - Fermentative Escherichia coli

Based on Cultural Characteristics

Growth rate

- Rapid growers- Vibrio cholerae
- □ Slow growers Mycobacterium tuberculosis

Pigment production

- Pigment producer Staphylococcus aureus
- Pigment non-producer Escherichia coli

Serratia marcescens

Based on environmental factors

- Temperature
- Oxygen dependence
- pH
- Salt concentration

On the basis of temperature

- Psychrophiles (15-20°C) Pseudomonas fluorescens
- Mesophiles (20-40°C) Escherichia coli, Salmonella enterica, Staphylococcus aureus
- Thermophiles (50-60°C)- Bacillus stearothermophilus
- Extremely thermophiles (as high as 250°C)

Oxygen dependence

- Obligate
- Microaerophiles
- Facultative

- Aerotolerant
- Obligate

Demonstration of Oxygen Requirements

Majority of the medically important bacteria grow best at neutral or slightly alkaline reaction (pH 7.2-7.6)

On the basis of salt concentration

- Non-halophiles: Unable to grow in high salt concentration (eg: *E. coli*)
- Halotolerant: Tolerate low level of salt concentration i.e. 8% salt
- Halophiles: Grow in high salt concentration i.e. salt loving
 - □ Slightly: Require 0.5to 3% NaCl
 - Pseudomonas spp., Vibrio, Moraxella, Acinetobacter
 - □ Moderately: Require 3% to 15% NaCl
 - Bacillus spp., Micrococcus spp.
 - Extremely: Require 15% to 30% salt
 - Halobacterium spp., Halococcus spp., Natranobacterium spp., Natranococcus spp., Haloterax spp

Other ways of classification

- Motile/Non-motile
- Pathogenic/Non-pathogenic
- Sensitive/Resistant (to particular antibiotic/ chemicals)

Lactose fermenter/Lactose non-fermenter

On the basis of motility

1. Motile :

Salmonella
Vibrio cholerae
Pseudomonas

2. Non motile :

Staphylococcus
 Shigella

Motility test

- to determine whether a bacterium is motile.
- Non-motile organisms which lack flagella, are usually going to form a single line of growth that does not spread into the surrounding area. While a motile bacterium will grow and make a hazy zone around the stab line.

On the basis of relationship with their host

- Saprophytes: Those bacteria that are free living but depend on dead and decayed organic matter for their growth
- Parasites: Those bacteria that can establish themselves and multiply in host tissue deriving nourishment from the host

Genotypic classification

- Ribosomal RNA (rRNA) sequence analysis
- Universal phylogenetic tree
- DNA-DNA hybridization
- G+C content

THE END

Thanks for having patience with me $\ensuremath{\textcircled{\odot}}$

gu damenne com

KEEP CALM AND Love Laboratory

References

- Medical Microbiology; Murray, Rosenthal, Pfaller; 7th Ed; Elsevier Saunders; 2013
- Jawetz, Melnick & Adelberg's Medical Microbiology; Brooks G, Carroll KC, Butel J, Morse S (Eds); 27th Ed; McGraw Hill Lange; 2016
- Sherris Medical Microbiology; 6th Ed; Ryan KJ, Ray CG; McGraw Hill Education; 2014