

Streptococcus spp. (in respiratory system)

Istar Dolapci, MD, PhD

Ankara University School of Medicine Department of Medical Microbiology

Objectives of today's class

- Describe the general characteristics of Streptococcus spp.
- Explain the classification system for Streptococcus spp.
- Identify the respiratory infections associated with Streptococcus spp.
- Identify a clinical isolate based on the results from standard laboratory diagnostic procedures

CONTENTS (Description Headings)

Streptococcus spp.

- General characteristics
- Classification

Streptococcus pyogenes

- Morphology
- Classification
- Cultural characteristics
- Biochemical reactions
- Resistance & antigenic structure
- Pathogenicity & virulence

- Toxins and other virulence factors
- **D** Epidemiology
- Disease caused
- Laboratory diagnosis
- Treatment & prophylaxis

Case I

A 5 year-old boy with fever and sore throat

History:

Attends to a daycare center Physical examination:

Fever 38.4°C, Red anterior pharynx & tonsillar region Anterior lymph nodes enlarged No rash

Follow up: Throat culture Penicillin therapy

Gram positive cocci Long chains

Laboratory Findings of Case I

Small white colonies with large β-hemolysis zone on blood agar Catalase negative Susceptible to bacitracin

Questions should be cleared

- What is the most likely organism causing the infection?
- How can this organism be detected?
- What microbial factors are important in the pathogenesis of the disease?
- Why detection is important for the management of the disease?
- Is there any antimicrobial resistance problem for that microorganism?

INTRODUCTION

- Gram positive cocci
- Arranged in chains
- Facultative anaerobic
- Nutritionally fastidious
- Catalase negative
- Some encapsulated
- Non motile

www.medscape.com/answers/225243-174800/what-isthe-pathophysiology-of-bacterial-pharyngitis

Part of normal flora of humans and animals

Classification of Streptococcus spp.

- Hemolytic patterns
- Serologic properties
- Biochemical (physiologic) properties

The streptococci can be divided into two groups:

- The β-hemolytic streptococci, which are classified by Lancefield grouping, and
- 2. The α -hemolytic and γ -hemolytic streptococci, which are classified by biochemical testing

Classification of Streptococcus spp.

Hemolytic patterns

- Initial classification based on hemolysis on sheep blood agar plates
 - $\Box \alpha$ (partial / incomplete hemolysis),
 - $\Box \beta$ (complete hemolysis), and
 - $\Box \gamma$ (no hemolysis)

Hemolysis Patterns of Streptococcus spp. on 5% sheep blood agar

Hemolysis on Blood agar

Dr. Nabil El Avila 2004 Pearson Educator, Inc., publishing as Berjarin Currings Diagnostic Microbiology

Classification of *Streptococcus* spp.

Serologic properties

- 1930's: Lancefield defines cell wall antigen groups
 - □ Lancefield groupings originally A to W
 - \Box Especially for β -hemolytic species

Based on Lancefield groupings;

- Groupable streptococci
 A, B and D; frequent
 C, G and F; less frequent
- Non groupable streptococci
 S. pneumoniae; causes pneumonia
 - □ Viridans streptococci
 - e.g. S. mutans; causes dental caries

Classification of Streptococcus spp.

Biochemical (physiologic) properties

- Sugar fermentation reactions
- Investigation of the presence of enzymes
- Determination of resistance or sensitivity to various chemical agents

Classification of Streptococcus spp.

Biochemical Classification	Serologic Classification	Hemolysis Patterns
S. pyogenes	A	β
S. agalactiae	В	β; rare γ
S. dysgalactiae,	С	β
S. equi,		
S. zooepidemicus		
S. bovis	D	α; γ; rare β
S. anginosus group	A, C, F, G, non groupable	β; α or rare γ
S. canis	G	β
Viridans group	Non groupable	α or γ
S. pneumoniae	Non groupable	α

ATTENTION: Group C and G also beta hemolytic !

Classification of Common β-Hemolytic Streptococci

Group	Representative species	Disease
A	S. pyogenes	Pharyngitis, skin and soft-tissue infections, bacteremia, rheumatic fever, acute glomerulonephritis
A, C, F, G	S. anginosus group	Abscess
B	S. agalactiae	Neonatal disease, endometritis, wound infections, urinary tract infections, bacteremia, pneumonia (in newborns), skin and soft-tissue infections
С	S. dysgalactiae	Pharyngitis, acute glomerulonephritis
F,G	S. anginosus group	Abscesses
С	S. dysgalactiae	Pharyngitis, acute glomerulonephritis

Streptococcus pyogenes (GAS)

Streptococcus Pyogenes-Science Source /sciencesource.com

Streptococcus pyogenes

Antigenic structure

- Group specific carbohydrates
 - Lancefield (group A) antigen
- Type specific protein
 - □ M protein; 150 serotype
 - M protein- major virulence protein
 - Binding to host cell
 - Antiphagocytic and complement inactivation
 - Cause to acute rheumatic fever (ARF)

Jawetz, Melnick & Adelberg's Medical Microbiology; 27th Ed; McGraw Hill Lange; 2016

Streptococcus pyogenes

Antigenic structure

Other surface components

- □ M like proteins
- Lipoteichoic acidattachment
- Fimbria-F protein attachment

Capsule (some strains)

Hyaluronic acid-protects
 from phagocytosis

Jawetz, Melnick & Adelberg's Medical Microbiology; 27th Ed; McGraw Hill Lange; 2016

Streptococcus pyogenes

Group A Streptococcus (GAS); human-restricted pathogen

- Cell-associated virulence factors
 - Hyaluronic acid capsule
 - □ M protein
 - over 150 types
 - Lipoteichoic acid (LTA)

- Extracellular products
 - □ Streptolysin S (SLS)
 - Streptolysin O (SLO)
 - □ DNases
 - □ Streptokinase
 - Spe (streptococcal pyogenic exotoxin)
 - □ Superantigens

Cell surface structure of Streptococcus pyogenes and secreted products involved in virulence

http://textbookofbacteriology.net/streptococcus_2.html

evasion: Streptolysin O and S Streptodornase C5a Peptidase Streptococcal Chemokine Protease

toxin: Streptococcal Pyrogenic Exotoxins

Cell-associated virulence factors

Hyaluronic acid capsule

- Antiphagocytic
- Not immunogenic
- M protein (over 150 types); other genes with similar proteins
 - Antiphagocytic
 - Bind IgG, IgA
 - Iron transport
 - Resistance to antimicrobial peptides

Lipoteichoic acid (LTA)

Enzymes- Help invasion and evasion

Streptolysin O (Immunogenic- O₂ sensitive)
 Induce antistreptolysin O (ASO) antibodies

Streptolysin S (Non immunogenic-O₂ stable)
 Responsible hemolysis seen on blood agar

Enzymes- Help invasion and evasion

□ Streptokinase (A and B)

- Promotes lysis of fibrin clots by activating a plasminogen
- BIOLOGICAL ROLE : It breaks down the fibrin barrier around the lesion & facilitate spreading of infection
- Intravenous streptokinase is given for the treatment of early MI & other thromboembolic disorders

Enzymes- Help invasion and evasion

DNase (streptodornase) (A-D)

- Causes depolymerization of DNA
- Pyogenic exudates contain large amount of DNA derived from nuclei of necrotic cells
- Helps to liquefy the thick pus & hence responsible for the thin serous character of streptococcal exudates
- Demonstration of Anti-DNAase B antibody is used in the retrospective diagnosis of S.pyogenes infection
 - THERAPEUTIC APPLICATION: To liquefy localized collection of thick exudates as in empyema, a preparation of streptokinase and streptodornase are used

Enzymes- Help invasion and evasion

□ Hyaluronidase

- Breaks down hyaluronic acid of tissues
- Thus favours spread of infection along intercellular spaces

Toxins

Streptococcal pyrogenic exotoxin (Spe), (Erythrogenic / Dick / Scarlatinal toxin)

- Produced by lysogenic strains of streptococci
- Heat labile 4 toxins- SpeA, SpeB, SpeC and Spe F
 - Types A & C are coded by bacteriophage genes
 - Type B gene is chromosomal
- Also some strains of C and G group streptococci produce
- Induced fever
 - That is the T cell mitogen that induce a massive release of inflammatory cytokines, causing fever, shock and tissue damage
- Superantigen
- Diseases: Toxic shock syndrome, Scarlet fever, Necrotizing fasciitis, Puerperal fever

Epidemiology

Transmission: Droplets or direct contact Can colonize the oropharynx of healthy children and young adults in the absence of clinical disease (carrier state) Season: Winter

Risk Groups: Crowding, classrooms or day care Age: Common 5-15-year of age

Clinical Diseases

- Suppurative Streptococcal Diseases
 - Pharyngitis
 - Erysipelas
 - Cellulitis
 - Pyoderma
 - Impetigo
- Toxin Mediated Streptococcal Diseases
 - Necrotizing fasciitis (streptococcal gangrene)
 - Streptococcal toxic shock syndrome
 - Scarlet fever
 - Puerperal fever

- Systemic Infections
 - Pneumonia
 - Septicemia
- Immunologic (poststreptococcal)
 Diseases
 - Rheumatic fever
 - □ Glomerulonephritis

Pharyngitis

- Adheres to the pharyngeal epithelium by lipoteichoic acid– covered surface pili and by hyaluronic acid in encapsulated strains
- Develops in 2 to 4 days after exposure to the pathogen

Pharyngitis

In infants and small children;

- It occurs as a subacute nasopharyngitis
 - □ A thin serous discharge
 - □ Little fever
 - Extension to the middle ear and the mastoid
 - □ Enlarged cervical lymph nodes
- The illness may persist for weeks

Pharyngitis

In older children and adults;

- It is more acute
 - Intense nasopharyngitis
 - 🗆 Tonsillitis
 - Intense redness and edema of the mucous membranes
 - Purulent exudate
 - □ Enlarged, tender cervical lymph nodes
 - □ A high fever (usually)

Pharyngitis / Pneumonia

- Usually does not involve the lungs
- When pneumonia does occur, is rapidly progressive and severe
 - It is most commonly a sequela to viral infections

Journal of Clinical Medicine Research 11 (8); 831-5, 2016

Pharyngitis / Scarlet fever

Circumoral pallor

Scarlet fever is a complication of pharyngitis, if pathogen produces pyrogenic exotoxin

Pastia lines

Strawberry appearance

Erythematous rash

www.zmescience.com/medicine/genetic/drug-resistant-scarlet-89242423/

- Microscopy
- Antigen detection
- Nucleic acid based tests
- Culture
- Identification
- Antibody detection

Microscopy;

- Only for the diagnosis of soft tissue infection on skin samples
 - Streptococci are not observed in Gram stains of uninfected skin
- Smears are of no value in infections of throat
 Many species of streptococci are part of the normal oropharyngeal flora

Antigen detection;

- Swab test
 - Only for group A
- Rapid
- Inexpensive
- Specific
- Low sensitivity

Add all the extracted solution

http://bioplus.gr/en/products2012/rapid-tests/strep-a/

Nucleic Acid Based Assays;

- PCR or probes; limited
 - □ Probe assays are less sensitive than culture
 - □ Amplification assays are as sensitive as culture
 - They are the test of choice where available

Culture;

- The posterior oropharynx (e.g., tonsils) specimens
- Gold standard
- Beta hemolysis on sheep blood 5% agar
 - Prolonged incubation (2 to 3 days)

Laboratory Diagnosis Identification;

- Catalase negative
- Susceptibility to bacitracin
- □ L-pyrrolidonyl arylamidase (PYR) test
- □ Group specific carbohydrate detection (card test)

Slide Agglutination Tests

https://www.slideserve.com/auryon/mlab-2434-microbiology-keri-brophy-martinez

Identification;

Catalase test

https://microbeonline.com/catalase-test-principle-uses-procedure-results/

 $\Box H_2O_2 + \text{catalase} \longrightarrow H_2O + O_2$

Catalase (+)	Staphylococcus spp.
Catalase (-)	Streptococcus spp.

Identification;

□ Susceptibility to bacitracin

Laboratory Diagnosis Identification;

L-pyrrolidonyl arylamidase (PYR) test

Substrate: L-pyrolidonylbeta-naphtylamide Enzyme: L-pyrrolidonyl arylamidase Product: Beta-naftilamid Reagent: Cinnamaldehit Result: A red compaund

PYR (+) Staphylococcus spp., Enterococcus spp., Streptococcus pyogenes

PYR (-) Other *streptococcus* spp.

https://microbiologynotes.com/pyr-l-pyrrolidonyl-βnaphthylamide-test-principle-uses-procedure-resultinterpretaion-examples-and-limitation/

Antibody detection

- Antibodies against the M protein (type-specific antibodies)
 - important for maintaining immunity
 - are not useful for diagnosis
- - 3 to 4 weeks after the initial exposure
 - shows a recent streptococcal pharyngeal infection, not immunity

Anti-DNAse

- occurs after either streptococcal pyoderma or pharyngitis
- mainly used in diagnosis of streptococcal pyoderma for which ASO titers is of much less value

Treatment

Sensitive to penicillin (No resistance to penicillins)
 Oral penicillin V or amoxicillin
 Oral cephalosporin or macrolide

- Resistance or poor clinical response has limited the usefulness of the tetracyclines and sulfonamides
- Resistance to erythromycin and the newer macrolides (e.g., azithromycin, clarithromycin) is increasing in frequency

References

- Medical Microbiology; Murray, Rosenthal, Pfaller; 7th Ed; Elsevier Saunders; 2013
- Jawetz, Melnick & Adelberg's Medical Microbiology; Brooks G, Carroll KC, Butel J, Morse S (Eds); 27th Ed; McGraw Hill Lange; 2016
- Sherris Medical Microbiology; 6th Ed; Ryan KJ, Ray CG; McGraw Hill Education; 2014

KeepCalmAndPosters.com