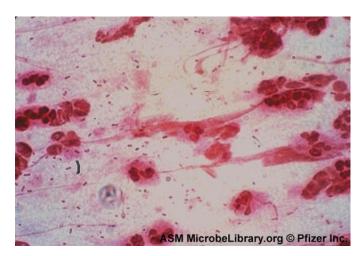


HAEMOPHILUS & BORDETELLA

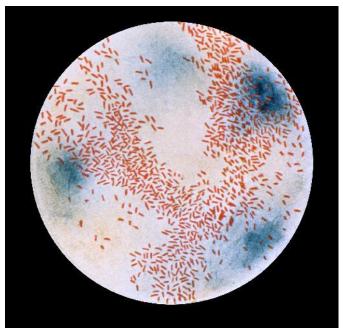
Istar Dolapci, MD, PhD


Ankara University School of Medicine Department of Medical Microbiology

CONTENTS (Description Headings)

- List the general characteristics within the genus Haemophilus
- Describe the difference in the typeable and nontypeable categories of *Haemophilus*, their virulence factors, and the disease they cause
- Describe the isolation requirements necessary for optimal recovery of *Haemophilus*
 - Explain the satellite phenomenon and the chemical basis for the phenomenon
 - □ List the X and V factor requirements for *H. influenzae*, *H. parainfluenzae*, and *H. ducreyi*

Haemophilus spp.


- Family: Pasteurellaceae
- Non-motile
- Facultative anaerobic
- Gram-negative rods
 Sometimes pleomorphic
- Small

CNS fluid sample

Pfeiffer's bacillus (Haemophilus influenza) under the microscope. Source:

http://pathmicro.med.sc.edu/Infectious%20Disease/H...

Sputum sample

Haemophilus species of clinical importance

1. H. influenzae

□ Type b is an important human pathogen

2. H. ducreyi

Sexually transmitted pathogen (chancroid)

3. Other Haemophilus spp. are normal flora

Sometimes can cause opportunistic infections

- □ *H. aegyptius* Pink eye (purulent conjunctivitis)
- □ *H. parainfluenzae* Pneumonia & endocarditis
- □ *H. aphrophilus* Pneumonia & endocarditis

Physiology and Structure

- Typical gram-negative rod Lipopolysaccharide with endotoxin activity Polysaccharide capsule Not all strains Encapsulated Non-encapsulated (nontypeable) strains Six antigenic serotypes: (a-f) Eight biotypes (I-VIII)
 - According to the;
 - □ Indole production
 - □ Urease activity
 - Ornithine decarboxylase activity

For identification & determination of causative agent

For epidemiologic purposes

Pathogenesis & Immunity

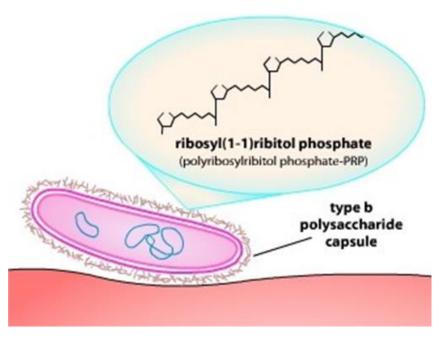
- H. parainfluenzae &
- H. influenzae (nonencapsulated)
- colonize the upper respiratory tract
- can spread locally
 - Otitis media
 - Sinusitis
 - Bronchitis
 - Pneumonia
- disseminated disease, relatively uncommon

H. influenzae

(encapsulated - serotype b)

- uncommon in the upper respiratory tract
- a common cause of disease in unvaccinated children
 - meningitis,
 - epiglottitis [obstructive laryngitis]
 - cellulitis

- Pili and nonpilus adhesins
 - mediate colonization of the oropharynx
- Cell wall components (LOS)
 - □ impair ciliary function
 - □ leading to damage of the respiratory epithelium


- The nonencapsulated strains can spread locally
- The major virulence factor in H. influenzae type b is **the antiphagocytic polysaccharide capsule.**
- In the absence of specific opsonic antibodies directed against the polysaccharide capsule, the bacteria can enter the blood.

Capsule

- ribose, ribitol, and phosphate (polyribitol phosphate [PRP])
- Antibodies (against the capsule)
 - stimulate bacterial phagocytosis
- Antibodies develop because of;
 - □ natural infection,
 - □ vaccination with purified PRP,
 - the passive transfer of maternal antibodies

IgA1 proteases

facilitate colonization on mucosal surfaces

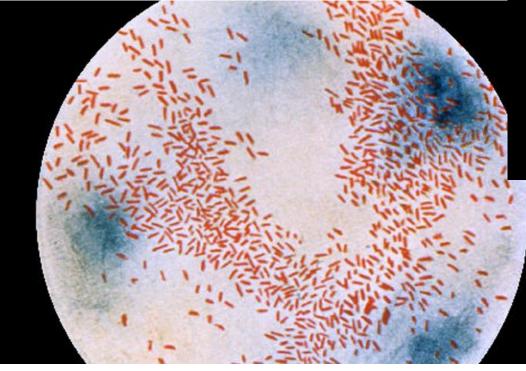
https://microbeonline.com/virulence-factors-haemophilusinfluenzae/

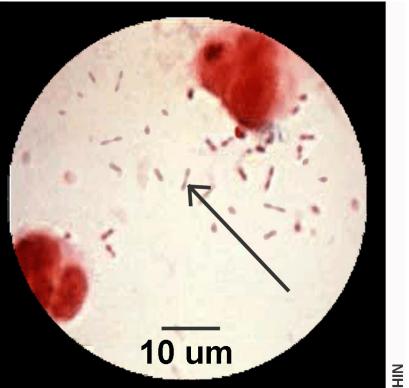
Epidemiology

- Nonencapsulated strains of *H. influenzae* are commonly found in the upper respiratory tract; while, encapsulated strains are detectable only in small numbers (and only when highly selective culture methods are used)
- Transmitted from person to person by the respiratory route (encapsulated strains)
 - Other Haemophilus strains likely arise endogenously as a person's own microbiota gains access to a normally sterile site
- *H. influenzae* type b disease can be prevented by administration of *Haemophilus* b conjugate vaccine to children

Specimens

- Expectorated sputum
- Other types of respiratory specimens
 - Pus, blood, and spinal fluid for smears and cultures depending on the source of the infection
- Sinusitis or otitis needle aspiration
- Pneumonia


sputum, blood


Specimens

- Susceptible to drying & temperature extremes
 Should be inoculated to the appropriate media immediately
 - Susceptible to contamination
 - Lower respiratory specimen should be collected by bronchioalveolar lavage

Microscopy

 Sensitive & specific
 Gram stain procedure must be carried out carefully

<u>https://www.cdc.gov/hi-</u> <u>disease/about/photos.html</u> <u>https://courses.cit.cornell.edu/biomi290/microsc</u> <u>opycases/sars/documents/BacLIB.htm</u>

Antigen detection

- Rapid and sensitive
 - Particle agglutination test
 - Agglutination occurs if
 PRP is present
 - Antigen can be detected in CSF and urine

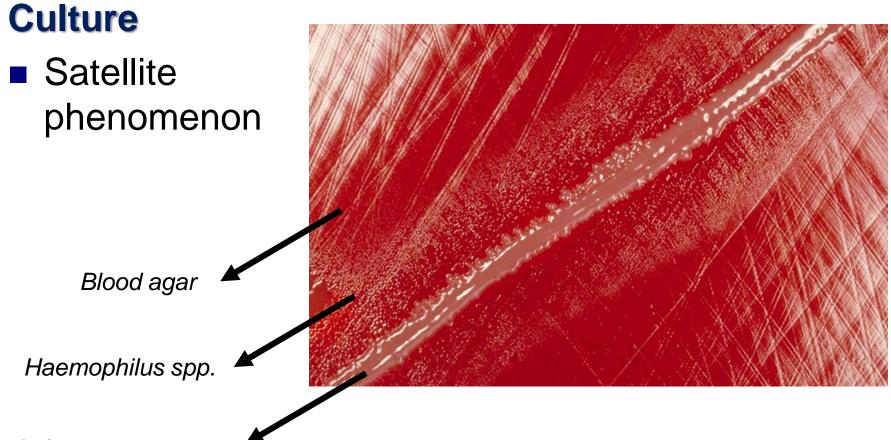
http://www.medical-labs.net/haemophilus-influenzae-b-detectionusing-rapid-latex-agglutination-test-2639/

Negative reaction

Positive reaction

Culture

The growth of most species of *Haemophilus* requires supplementation of media with one or both of the following growth-stimulating factors:


- 1. Hemin (also called X factor for "unknown factor")
- 2. Nicotinamide adenine dinucleotide (NAD; also called V factor for "vitamin")

Species	X factor	V factor
H.influenzae	+	+
H.heamolyticus	+	+
H.parainfluenzae	-	+
H.paraheamolyticus	-	+
H.ducreyi	+	-
H.aphrophilus	+	-

Culture

- Chocolate agar
 - \square at 35-37°C in a 5% CO₂
 - Contains NAD (V factor)
 - Contains Hemin (X factor)
 - 1- to 2-mm, smooth,
 opaque colonies after
 24 hours of incubation

Staphylococcus aureus

https://www.cdc.gov/hi-disease/about/photos.html

Treatment

- Broad-spectrum cephalosporins
- Amoxicillin
 - If susceptible; approximately 30% of strains are resistant
- Cephalosporin
- Azithromycin
- Doxycycline
- Fluoroquinolone
 - Routine susceptibility testing of clinical isolates as a guide to therapy may not be necessary (for now!)

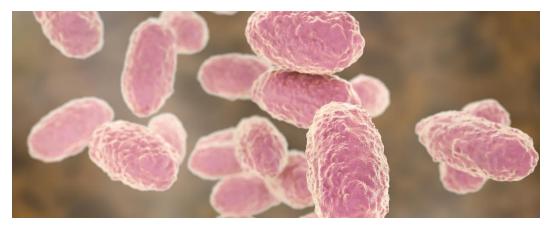
Prevention

Active immunization with purified capsular PRP
 At 2-4-6. months & a rapel at between 12-15 months

CDC recommends Hib vaccination for:

- □ All children younger than 5 years old
- Unvaccinated older children and adults with certain medical conditions
- People who receive a bone marrow transplant

Control


- Antibiotic chemoprophylaxis is used to eliminate the carriage of *H. influenzae* type b in children at high risk for disease
 - e.g., children <2 years in a family or day-care center where systemic disease is documented
- Rifampin prophylaxis has been used in these settings

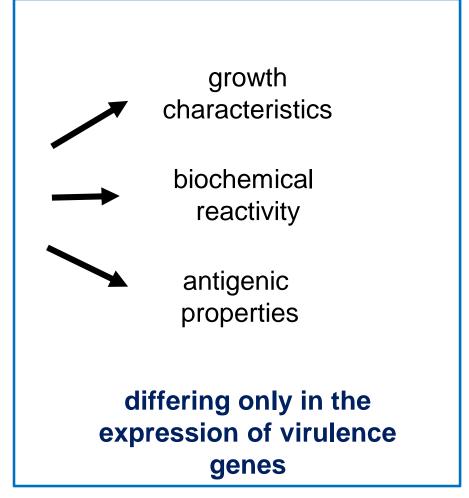
CONTENTS (Description Headings)

- Describe the general characteristics of the Bordetella spp.
- Describe the proper collection and transport of specimens for the detection of *B. pertussis*
- Describe the optimal conditions for culturing *B. pertussis*, including specimens of choice for optimal recovery
- Explain the limitations of direct fluorescent antibody (DFA) and polymerase chain reaction (PCR) methods for detecting *B. pertussis*, including assay specificity and sensitivity

Bordetella spp.

- Extremely small
 0.2 to 0.5 × 1 µm
- Strictly aerobic,
- Gram-negative
- Coccobacillus
- Non-motile
- Oxidize amino acids
- Don't ferment carbohydrates

https://www.hygiene-in-practice.com/pathogen/bordetella-pertussis/


Bordetella spp.

Bordetella pertussis

- pertussis or whooping cough
- Bordetella parapertussis
 - a milder form of pertussis

Bordetella bronchiseptica

 respiratory disease in dogs, swine, laboratory animals, and occasionally human

- Exposure to the organism
- Bacterial attachment to the ciliated epithelial cells of the respiratory tract
- Proliferation of the bacteria
- Production of localized tissue damage and systemic toxicity

Virulence factor	Biologic effect	
Adhesins		
Filamentous hemagglutinin	Required to binding to sulfated glycoproteins on membranes of ciliated cells in trachea	These adhesins also bind to CR3, a glycoprotein receptor on the surface of
Pertactin	As with filamentous hemagglutinin	macrophages
Fimbriae	Bind to mammalian cells; role in disease is unknown but stimulate humoral immunity	
Pertussis toxin	S2 subunit binds to glycolipid on surface of ciliated respiratory cells; S3 subunit binds to ganglioside on surface of phagocytic cells	

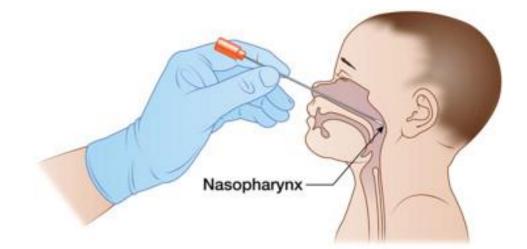
Virulence factor	Biologic effect
Toxins	
Pertussis toxin	S1 subunit inactivates G1α, the membrane surface protein that controls adenylate cyclase activity; uncontrolled expression leads to increased cyclic adenoside monophosphate levels; toxin inhibits phagocytic killing and monocyte migration
Adenylate cyclase/ hemolysin toxin	Increases intracellular level of adenylate cyclase; inhibits phagocytic killing and monocyte migration

Bordetella pertussis Pathogenesis & Immunity

Virulence factor	Biologic effect
Toxins	
Dermonecrotic toxin	Causes dose-dependent skin lesions or fatal reactions in experimental animal model; role in disease is unknown
Tracheal cytotoxin	A peptidoglycan fragment that kills ciliated respiratory cells and stimulates the release of interleukin-1 (fever)
Lipopolysaccharide	Two distinct lipopolysaccharide molecules with either lipid A or lipid X; activates alternate complement pathway and stimulates cytokine release; role in disease is unknown

Epidemiology

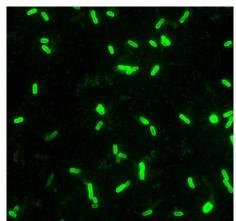
- Human reservoir host
- Worldwide distribution
- Children younger than 1 year are at greatest risk for infection, but disease is now most common in older children and young adults
- Nonvaccinated individuals are at greatest risk for disease
- Disease spreads person-to-person by infectious aerosols


Laboratory Diagnosis

- Specimen Collection and Transport
- Microscopy
- Nucleic Acid–Based Tests
- Culture
- Identification
- Antibody Detection

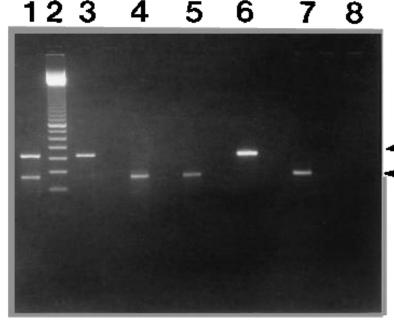
Laboratory Diagnosis

Specimen Collection and Transport


- optimal diagnostic specimen: nasopharyngeal aspirate
- sensitive to drying
- □ should be placed in a suitable transport medium

Laboratory Diagnosis

Microscopy


- a direct fluorescent antibody procedure using either monoclonal or polyclonal antibodies can be used
- insensitive and nonspecific
- PCR and/or culture should also be performed

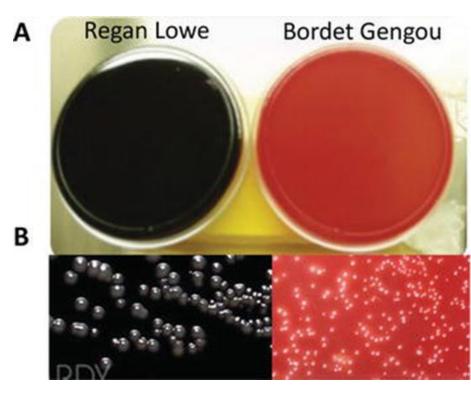
Laboratory Diagnosis

Nucleic Acid–Based Tests

the most sensitive and specific tests

https://www.researchgate.net/figure/Detecti on-of-B-pertussis-DNA-by-PCR-analysis-ofmaterial-eluted-from-slides-The_fig1_14624876

Laboratory Diagnosis


Culture

- specific but insensitive
- □ affected by;
 - patient factors (i.e., stage of illness, use of antibiotics)
 - **u** the quality of the specimen
 - transport conditions
 - culture methods

Laboratory Diagnosis

Culture

- Bordet-Gengou medium
- Regan Lowe charcoal medium
 - supplemented with glycerol, peptones, and horse blood
 - should be incubated at 35°C, in a humidified chamber, and for 7 to 12 days

https://www.intechopen.com/books/pertussis-disease-controland-challenges/update-on-epidemiology-diagnosis-andtreatment-of-pertussis

Laboratory Diagnosis

- Antibody Detection
 - Detection of IgG or IgA can be used as a confirmatory test
 - Enzyme-linked immunosorbent assay (ELISA) tests have been developed to detect IgA, IgM, and IgG antibodies against pertussis toxin, filamentous hemagglutinin, pertactin, and fimbriae

Treatment, Prevention, and Control

Supportive

- with nursing supervision during the paroxysmal and convalescent stages of the illness
- Macrolides (i.e., erythromycin, azithromycin, clarithromycin)
- □ Azithromycin
- **Clarithromycin**
- Trimethoprim-sulfamethoxazole
- Fluoroquinolones

THANKS FOR LISTENING ③

guidamanna com

References

- Medical Microbiology; Murray, Rosenthal, Pfaller; 7th Ed; Elsevier Saunders; 2013
- Jawetz, Melnick & Adelberg's Medical Microbiology; Brooks G, Carroll KC, Butel J, Morse S (Eds); 27th Ed; McGraw Hill Lange; 2016
- Sherris Medical Microbiology; 6th Ed; Ryan KJ, Ray CG; McGraw Hill Education; 2014