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DOĞRUSAL MOMENTUM VE KORUNUMU

v hızı ile hareket eden m kütleli bir parçacığın doğrusal momentumu kütle ve hızın 
çarpımi olarak tanımlanır.
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onsider what happens when a golf ball is struck by a club. The ball is given a
very large initial velocity as a result of the collision; consequently, it is able to
travel more than 100 m through the air. The ball experiences a large accelera-

tion. Furthermore, because the ball experiences this acceleration over a very short
time interval, the average force exerted on it during the collision is very great. Ac-
cording to Newton’s third law, the ball exerts on the club a reaction force that is
equal in magnitude to and opposite in direction to the force exerted by the club
on the ball. This reaction force causes the club to accelerate. Because the club is
much more massive than the ball, however, the acceleration of the club is much
less than the acceleration of the ball.

One of the main objectives of this chapter is to enable you to understand and
analyze such events. As a first step, we introduce the concept of momentum, which is
useful for describing objects in motion and as an alternate and more general
means of applying Newton’s laws. For example, a very massive football player is of-
ten said to have a great deal of momentum as he runs down the field. A much less
massive player, such as a halfback, can have equal or greater momentum if his
speed is greater than that of the more massive player. This follows from the fact
that momentum is defined as the product of mass and velocity. The concept of
momentum leads us to a second conservation law, that of conservation of momen-
tum. This law is especially useful for treating problems that involve collisions be-
tween objects and for analyzing rocket propulsion. The concept of the center of
mass of a system of particles also is introduced, and we shall see that the motion of
a system of particles can be described by the motion of one representative particle
located at the center of mass.

LINEAR MOMENTUM AND ITS CONSERVATION
In the preceding two chapters we studied situations too complex to analyze easily
with Newton’s laws. In fact, Newton himself used a form of his second law slightly
different from (Eq. 5.2)—a form that is considerably easier to apply in
complicated circumstances. Physicists use this form to study everything from sub-
atomic particles to rocket propulsion. In studying situations such as these, it is of-
ten useful to know both something about the object and something about its mo-
tion. We start by defining a new term that incorporates this information:

!F " ma

9.1

The linear momentum of a particle of mass m moving with a velocity v is de-
fined to be the product of the mass and velocity:

(9.1)p ! mv

C

Linear momentum is a vector quantity because it equals the product of a scalar
quantity m and a vector quantity v. Its direction is along v, it has dimensions
ML/T, and its SI unit is kg # m/s.

If a particle is moving in an arbitrary direction, p must have three compo-
nents, and Equation 9.1 is equivalent to the component equations

(9.2)

As you can see from its definition, the concept of momentum provides a quantita-
tive distinction between heavy and light particles moving at the same velocity. For
example, the momentum of a bowling ball moving at 10 m/s is much greater than
that of a tennis ball moving at the same speed. Newton called the product mv

px " mvx  py " mvy  pz " mvz

Definition of linear momentum of
a particle

6.2
Bir m skaleri ile bir V vektörünün çarpımına eşit olduğundan momentum vektörel bir niceliktir. 
Yönü hız ile aynıdır ve boyutu ML/T’dir/SI’de birimi kg.m/s’dir. 

Bir parçacik rasgele bir yönde hareket ediyorsa, p üç bileşene sahip olur ve 
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İKİ PARÇACIKLI BİR SİSTEM İÇİN MOMENTUM KORUNUMU

Birbirleriyle etkileşen çevrelerinden yalıtılmış iki parçacık ele  alalım. Bu durumun analizinde 
Newton’u  üçüncü kanunu önemlidir. 

Bir an için 1. parçacığın momentumu p1 ve 1. parçacığın momentumu p2 olduğunu  varsayalım. 

Her parçacığa Newton’un 2. yasasını uygularsak; 
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quantity of motion; this is perhaps a more graphic description than our present-day
word momentum, which comes from the Latin word for movement.

Two objects have equal kinetic energies. How do the magnitudes of their momenta com-
pare? (a) (b) (c) (d) not enough information to tell.

Using Newton’s second law of motion, we can relate the linear momentum of a
particle to the resultant force acting on the particle: The time rate of change of the
linear momentum of a particle is equal to the net force acting on the particle:

(9.3)

In addition to situations in which the velocity vector varies with time, we can
use Equation 9.3 to study phenomena in which the mass changes. The real value
of Equation 9.3 as a tool for analysis, however, stems from the fact that when the
net force acting on a particle is zero, the time derivative of the momentum of the
particle is zero, and therefore its linear momentum1 is constant. Of course, if 
the particle is isolated, then by necessity and p remains unchanged. This
means that p is conserved. Just as the law of conservation of energy is useful in
solving complex motion problems, the law of conservation of momentum can
greatly simplify the analysis of other types of complicated motion.

Conservation of Momentum for a Two-Particle System

Consider two particles 1 and 2 that can interact with each other but are isolated
from their surroundings (Fig. 9.1). That is, the particles may exert a force on each
other, but no external forces are present. It is important to note the impact of
Newton’s third law on this analysis. If an internal force from particle 1 (for exam-
ple, a gravitational force) acts on particle 2, then there must be a second internal
force—equal in magnitude but opposite in direction—that particle 2 exerts on
particle 1.

Suppose that at some instant, the momentum of particle 1 is p1 and that of
particle 2 is p2 . Applying Newton’s second law to each particle, we can write

where F21 is the force exerted by particle 2 on particle 1 and F12 is the force ex-
erted by particle 1 on particle 2. Newton’s third law tells us that F12 and F21 are
equal in magnitude and opposite in direction. That is, they form an action–reac-
tion pair F12 ! " F21 . We can express this condition as

or as

dp1

dt
#

dp2

dt
!

d
dt

 (p1 # p2) ! 0

F21 # F12 ! 0

  F21 !
dp1

dt
        and         F12 !

dp2

dt

$F ! 0

$F !
dp
dt

!
d(mv)

dt

p1 % p 2 ,p1 ! p 2 ,p1 & p 2 ,

Quick Quiz 9.1

1In this chapter, the terms momentum and linear momentum have the same meaning. Later, in Chapter
11, we shall use the term angular momentum when dealing with rotational motion.

6.2

Newton’s second law for a particle

p2 = m2v2

m2

m1

F21

F12

p1 = m1v1

Figure 9.1 At some instant, the
momentum of particle 1 is p1 !
m1v1 and the momentum of parti-
cle 2 is p2 ! m 2v2 . Note that F12 !
" F21 . The total momentum of the
system ptot is equal to the vector
sum p1 # p2 .
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İKİ PARÇACIKLI BİR SİSTEM İÇİN MOMENTUM KORUNUMU

Toplam momentumun (ptop=p1+p2) zamana göre türevi sıfır olduğundan sistemin 
toplam momentumunun sabit kaldığı sonucuna varırız. 
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Because the time derivative of the total momentum ptot ! p1 " p2 is zero, we con-
clude that the total momentum of the system must remain constant:

(9.4)

or, equivalently,

(9.5)

where pli and p2i are the initial values and p1f and p2f the final values of the mo-
mentum during the time interval dt over which the reaction pair interacts. Equa-
tion 9.5 in component form demonstrates that the total momenta in the x, y, and z
directions are all independently conserved:

(9.6)

This result, known as the law of conservation of linear momentum, can be ex-
tended to any number of particles in an isolated system. It is considered one of the
most important laws of mechanics. We can state it as follows:

#
system

 pix ! #
system

 pf x  #
system

 piy ! #
system

 pf y  #
system

 piz ! #
system

 pf z

p1i " p2i ! p1f " p2f

ptot ! #
system

 p ! p1 " p2 ! constant

Whenever two or more particles in an isolated system interact, the total momen-
tum of the system remains constant.

This law tells us that the total momentum of an isolated system at all times
equals its initial momentum.

Notice that we have made no statement concerning the nature of the forces
acting on the particles of the system. The only requirement is that the forces must
be internal to the system.

Your physical education teacher throws a baseball to you at a certain speed, and you catch
it. The teacher is next going to throw you a medicine ball whose mass is ten times the mass
of the baseball. You are given the following choices: You can have the medicine ball thrown
with (a) the same speed as the baseball, (b) the same momentum, or (c) the same kinetic
energy. Rank these choices from easiest to hardest to catch.

Quick Quiz 9.2

The Floating AstronautEXAMPLE 9.1
A SkyLab astronaut discovered that while concentrating on
writing some notes, he had gradually floated to the middle of
an open area in the spacecraft. Not wanting to wait until he
floated to the opposite side, he asked his colleagues for a
push. Laughing at his predicament, they decided not to help,
and so he had to take off his uniform and throw it in one di-
rection so that he would be propelled in the opposite direc-
tion. Estimate his resulting velocity.

Solution We begin by making some reasonable guesses of
relevant data. Let us assume we have a 70-kg astronaut who
threw his 1-kg uniform at a speed of 20 m/s. For conve-

Conservation of momentum

Figure 9.2 A hapless astronaut has discarded his uniform to get
somewhere.

v2fv1f

Yalıtılmış bir sistemin toplam momentumunun her zaman ilk momentumuna eşit 
olduğunu söyler. 
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changes from pi at time ti to pf at time tf , integrating Equation 9.7 gives

(9.8)

To evaluate the integral, we need to know how the force varies with time. The
quantity on the right side of this equation is called the impulse of the force F act-
ing on a particle over the time interval Impulse is a vector defined by

(9.9)I ! "tf

ti

 F dt ! "p

"t ! tf # ti .

"p ! pf # pi ! "tf

ti
 F dt

The impulse of the force F acting on a particle equals the change in the mo-
mentum of the particle caused by that force.

This statement, known as the impulse–momentum theorem,3 is equivalent to
Newton’s second law. From this definition, we see that impulse is a vector quantity
having a magnitude equal to the area under the force–time curve, as described in
Figure 9.4a. In this figure, it is assumed that the force varies in time in the general
manner shown and is nonzero in the time interval The direction of
the impulse vector is the same as the direction of the change in momentum. Im-
pulse has the dimensions of momentum—that is, ML/T. Note that impulse is not
a property of a particle; rather, it is a measure of the degree to which an external
force changes the momentum of the particle. Therefore, when we say that an im-
pulse is given to a particle, we mean that momentum is transferred from an exter-
nal agent to that particle.

Because the force imparting an impulse can generally vary in time, it is conve-
nient to define a time-averaged force

(9.10)

where (This is an application of the mean value theorem of calculus.)
Therefore, we can express Equation 9.9 as

(9.11)

This time-averaged force, described in Figure 9.4b, can be thought of as the con-
stant force that would give to the particle in the time interval "t the same impulse
that the time-varying force gives over this same interval.

In principle, if F is known as a function of time, the impulse can be calculated
from Equation 9.9. The calculation becomes especially simple if the force acting
on the particle is constant. In this case, and Equation 9.11 becomes

(9.12)

In many physical situations, we shall use what is called the impulse approxi-
mation, in which we assume that one of the forces exerted on a particle acts
for a short time but is much greater than any other force present. This ap-
proximation is especially useful in treating collisions in which the duration of the

I ! F "t

F ! F

I ! F "t

"t ! tf # ti .

F !
1
"t "tf

t i

 F dt

"t ! tf # ti .

Impulse–momentum theorem

Impulse of a force

3Although we assumed that only a single force acts on the particle, the impulse–momentum theorem is
valid when several forces act; in this case, we replace F in Equation 9.9 with $F.

t i t f

t i

F

(a)

t f
t

F

(b)

t

F

Area = F∆t

Figure 9.4 (a) A force acting on
a particle may vary in time. The im-
pulse imparted to the particle by
the force is the area under the
force versus time curve. (b) In the
time interval "t, the time-averaged
force (horizontal dashed line)
gives the same impulse to a particle
as does the time-varying force de-
scribed in part (a).

Bir parçacık üzerine etkiyen F kuvvetinin impulsu, bu kuvvetin sebep olduğu parçacığın 
momentumundaki değişime eşittir.
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Rank an automobile dashboard, seatbelt, and airbag in terms of (a) the impulse and 
(b) the average force they deliver to a front-seat passenger during a collision.

COLLISIONS
In this section we use the law of conservation of linear momentum to describe
what happens when two particles collide. We use the term collision to represent
the event of two particles’ coming together for a short time and thereby producing
impulsive forces on each other. These forces are assumed to be much greater
than any external forces present.

A collision may entail physical contact between two macroscopic objects, as de-
scribed in Figure 9.7a, but the notion of what we mean by collision must be gener-
alized because “physical contact” on a submicroscopic scale is ill-defined and
hence meaningless. To understand this, consider a collision on an atomic scale
(Fig. 9.7b), such as the collision of a proton with an alpha particle (the nucleus of
a helium atom). Because the particles are both positively charged, they never
come into physical contact with each other; instead, they repel each other because
of the strong electrostatic force between them at close separations. When two par-
ticles 1 and 2 of masses m1 and m2 collide as shown in Figure 9.7, the impulsive
forces may vary in time in complicated ways, one of which is described in Figure
9.8. If F21 is the force exerted by particle 2 on particle 1, and if we assume that no
external forces act on the particles, then the change in momentum of particle 1
due to the collision is given by Equation 9.8:

Likewise, if F12 is the force exerted by particle 1 on particle 2, then the change in
momentum of particle 2 is

From Newton’s third law, we conclude that

Because the total momentum of the system is we conclude that
the change in the momentum of the system due to the collision is zero:

This is precisely what we expect because no external forces are acting on the sys-
tem (see Section 9.2). Because the impulsive forces are internal, they do not
change the total momentum of the system (only external forces can do that).

psystem ! p1 " p2 ! constant

psystem ! p1 " p2 ,

#p1 " #p2 ! 0 

 #p1 ! $#p2

#p2 ! !tf

ti
 F12 dt

#p1 ! !tf

ti
 F21 dt

9.3

Quick Quiz 9.4

signs of the velocities indicated the reversal of directions.
What would the mathematics be describing if both the initial
and final velocities had the same sign?

Note that the magnitude of this force is large compared with
the weight of the car ( N), which justifies
our initial assumption. Of note in this problem is how the

mg ! 1.47 % 104

p

+

+ +

He

(b)

m2
m1

(a)

F12F21

4

t

F12

F21

F

Figure 9.8 The impulse force as
a function of time for the two col-
liding particles described in Figure
9.7a. Note that F12 ! $ F21.

Figure 9.7 (a) The collision be-
tween two objects as the result of
direct contact. (b) The “collision”
between two charged particles.

6.5
&
6.6

Çarpışma, iki parçacığın birbiri üzerine impulsif kuvvetler oluşturarak kısa süre birlikte 
olmaları olarak tanımlanabilir.

Yalıtılmış bir sistemin çarpışmadan hemen önceki toplam momentumu, çarpışmadan 
hemen sonraki toplam momentumuna eşittir.

Dr. Çağın KAMIŞCIOĞLU, Fizik I, Doğrusal Monentum ve Çarpışmalar 
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iki cismin arasındaki esnek çarpışma toplam momentum ve toplam kinetik enerjinin çarpışmadan 
önce ve sonra sabit kaldığı çarpışmadır.

iki cismin arasındaki esnek olmayan çarpışma momentum korunduğu halde toplam kinetik 
enerjinin çarpışmadan önce ve sonra aynı olmadığı çarpışmadır.

bir meteor taşının yere çarptığinda olduğu gibi çarpışan cisimlerin çarpışmadan sonra birlikte 
hareket ettiği çarpışma tamamen esnek olmayan çarpışma olarak adlandırılmaktadır.

Dr. Çağın KAMIŞCIOĞLU, Fizik I, Doğrusal Monentum ve Çarpışmalar 
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Şimdi kafa-kafaya esnek çarpışmaya uğrayan iki parçacığı ele alalım. Bu durumda momentum 
ve kinetik enerji birlikte korunur.

9.4 Elastic and Inelastic Collisions in One Dimension 261

Inelastic collision

Figure 9.9 Schematic representa-
tion of a perfectly inelastic head-on
collision between two particles: 
(a) before collision and (b) after
collision.

An inelastic collision is one in which total kinetic energy is not the same before and
after the collision (even though momentum is constant). Inelastic collisions are of two
types. When the colliding objects stick together after the collision, as happens
when a meteorite collides with the Earth, the collision is called perfectly inelastic.
When the colliding objects do not stick together, but some kinetic energy is lost, as
in the case of a rubber ball colliding with a hard surface, the collision is called in-
elastic (with no modifying adverb). For example, when a rubber ball collides with
a hard surface, the collision is inelastic because some of the kinetic energy of the
ball is lost when the ball is deformed while it is in contact with the surface.

In most collisions, kinetic energy is not the same before and after the collision
because some of it is converted to internal energy, to elastic potential energy when
the objects are deformed, and to rotational energy. Elastic and perfectly inelastic
collisions are limiting cases; most collisions fall somewhere between them.

In the remainder of this section, we treat collisions in one dimension and con-
sider the two extreme cases—perfectly inelastic and elastic collisions. The impor-
tant distinction between these two types of collisions is that momentum is con-
stant in all collisions, but kinetic energy is constant only in elastic
collisions.

Perfectly Inelastic Collisions

Consider two particles of masses m1 and m2 moving with initial velocities v1i and v2i
along a straight line, as shown in Figure 9.9. The two particles collide head-on, 
stick together, and then move with some common velocity vf after the collision. 
Because momentum is conserved in any collision, we can say that the total momen-
tum before the collision equals the total momentum of the composite system after
the collision:

(9.13)

(9.14)

Which is worse, crashing into a brick wall at 40 mi/h or crashing head-on into an oncoming
car that is identical to yours and also moving at 40 mi/h?

Elastic Collisions

Now consider two particles that undergo an elastic head-on collision (Fig. 9.10).
In this case, both momentum and kinetic energy are conserved; therefore, we have

(9.15)

(9.16)

Because all velocities in Figure 9.10 are either to the left or the right, they can be
represented by the corresponding speeds along with algebraic signs indicating di-
rection. We shall indicate v as positive if a particle moves to the right and negative

1
2m1v1i 

2 ! 1
2m2v2i 

2 " 1
2m1v1f 

2 ! 1
2m2v2f 

2

m1v1i ! m2v2i " m1v1f ! m2v2f 

Quick Quiz 9.7

 vf "
m1v1i ! m2v2i

m1 ! m2

m1v1i ! m2v2i " (m1 ! m2)vf Before collision

(a)

m1 m2
v1i v2i

After collision

(b)

vf
m1 + m2

6.6

QuickLab
Hold a Ping-Pong ball or tennis ball
on top of a basketball. Drop them
both at the same time so that the bas-
ketball hits the floor, bounces up, and
hits the smaller falling ball. What
happens and why?
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if it moves to the left. As has been seen in earlier chapters, it is common practice
to call these values “speed” even though this term technically refers to the magni-
tude of the velocity vector, which does not have an algebraic sign.

In a typical problem involving elastic collisions, there are two unknown quanti-
ties, and Equations 9.15 and 9.16 can be solved simultaneously to find these. An al-
ternative approach, however—one that involves a little mathematical manipula-
tion of Equation 9.16—often simplifies this process. To see how, let us cancel the
factor in Equation 9.16 and rewrite it as

and then factor both sides:

(9.17)

Next, let us separate the terms containing m1 and m2 in Equation 9.15 to get

(9.18)

To obtain our final result, we divide Equation 9.17 by Equation 9.18 and get

(9.19)

This equation, in combination with Equation 9.15, can be used to solve problems
dealing with elastic collisions. According to Equation 9.19, the relative speed of
the two particles before the collision equals the negative of their relative
speed after the collision, 

Suppose that the masses and initial velocities of both particles are known.
Equations 9.15 and 9.19 can be solved for the final speeds in terms of the initial
speeds because there are two equations and two unknowns:

(9.20)

(9.21)

It is important to remember that the appropriate signs for v1i and v2i must be in-
cluded in Equations 9.20 and 9.21. For example, if particle 2 is moving to the left
initially, then v2i is negative.

Let us consider some special cases: If m1 ! m2 , then  and 
That is, the particles exchange speeds if they have equal masses. This is approxi-
mately what one observes in head-on billiard ball collisions—the cue ball stops,
and the struck ball moves away from the collision with the same speed that the cue
ball had.

If particle 2 is initially at rest, then and Equations 9.20 and 9.21 be-
come

(9.22)

(9.23)

If m1 is much greater than m2 and , we see from Equations 9.22 and
9.23 that and That is, when a very heavy particle collides head-
on with a very light one that is initially at rest, the heavy particle continues its mo-

v2f ! 2v1i .v1f ! v1i

v2i ! 0

v2f ! " 2m1

m1 " m2
#v1i

v1f ! " m1 # m2

m1 " m2
#v1i

v2i ! 0

v2f ! v1i .v1f ! v2i

v2f ! " 2m1

m1 " m2
#v1i " " m2 # m1

m1 " m2
#v2i

v1f ! " m1 # m2

m1 " m2
#v1i " " 2m2

m1 " m2
#v2i

#(v1f # v2f ).
v1i # v2i

v1i # v2i ! #(v1f # v2f)

v1i " v1f ! v2f " v2i 

m1(v1i # v1f) ! m2(v2f # v2i)

m1(v1i # v1f)(v1i " v1f) ! m2(v2f # v2i)(v2f " v2i)

m1(v1i 

2 # v1f 

2) ! m2(v2f 

2 # v2i 

2)

1
2

Elastic collision: particle 2 initially
at rest

Elastic collision: relationships
between final and initial velocities

Figure 9.10 Schematic represen-
tation of an elastic head-on colli-
sion between two particles: (a) be-
fore collision and (b) after
collision.

m1 m2
v1i

Before collision

v2i

v1f v2f

After collision

(a)

(b)
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speed after the collision, 
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(9.21)

It is important to remember that the appropriate signs for v1i and v2i must be in-
cluded in Equations 9.20 and 9.21. For example, if particle 2 is moving to the left
initially, then v2i is negative.

Let us consider some special cases: If m1 ! m2 , then  and 
That is, the particles exchange speeds if they have equal masses. This is approxi-
mately what one observes in head-on billiard ball collisions—the cue ball stops,
and the struck ball moves away from the collision with the same speed that the cue
ball had.

If particle 2 is initially at rest, then and Equations 9.20 and 9.21 be-
come

(9.22)

(9.23)

If m1 is much greater than m2 and , we see from Equations 9.22 and
9.23 that and That is, when a very heavy particle collides head-
on with a very light one that is initially at rest, the heavy particle continues its mo-

v2f ! 2v1i .v1f ! v1i

v2i ! 0

v2f ! " 2m1

m1 " m2
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Elastic collision: particle 2 initially
at rest

Elastic collision: relationships
between final and initial velocities

Figure 9.10 Schematic represen-
tation of an elastic head-on colli-
sion between two particles: (a) be-
fore collision and (b) after
collision.

m1 m2
v1i

Before collision

v2i

v1f v2f

After collision

(a)

(b)

Ilk hizlar cinsinden son hizlar
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TWO-DIMENSIONAL COLLISIONS
In Sections 9.1 and 9.3, we showed that the momentum of a system of two particles
is constant when the system is isolated. For any collision of two particles, this result
implies that the momentum in each of the directions x, y, and z is constant. How-
ever, an important subset of collisions takes place in a plane. The game of billiards
is a familiar example involving multiple collisions of objects moving on a two-
dimensional surface. For such two-dimensional collisions, we obtain two compo-
nent equations for conservation of momentum:

Let us consider a two-dimensional problem in which particle 1 of mass m1 col-
lides with particle 2 of mass m2 , where particle 2 is initially at rest, as shown in Fig-
ure 9.14. After the collision, particle 1 moves at an angle ! with respect to the hori-
zontal and particle 2 moves at an angle " with respect to the horizontal. This is
called a glancing collision. Applying the law of conservation of momentum in com-
ponent form, and noting that the initial y component of the momentum of the
two-particle system is zero, we obtain

(9.24)

(9.25)

where the minus sign in Equation 9.25 comes from the fact that after the collision,
particle 2 has a y component of velocity that is downward. We now have two inde-
pendent equations. As long as no more than two of the seven quantities in Equa-
tions 9.24 and 9.25 are unknown, we can solve the problem.

If the collision is elastic, we can also use Equation 9.16 (conservation of kinetic
energy), with to give

(9.26)

Knowing the initial speed of particle 1 and both masses, we are left with four un-
knowns . Because we have only three equations, one of the four re-
maining quantities must be given if we are to determine the motion after the colli-
sion from conservation principles alone.

If the collision is inelastic, kinetic energy is not conserved and Equation 9.26
does not apply.

(v1f , v2f , !, ")

1
2 m1v1i 

2 # 1
2 m1v1f 

2 $ 1
2 m2v2f 

2

v2i # 0,

 0 # m1v1f sin ! % m2v2f sin "

m1v1i # m1v1f cos ! $ m2v2f cos "

m1v1iy $ m2v2iy # m1v1fy $ m2v2fy

m1v1ix $ m2v2ix # m1v1fx $ m2v2 fx

9.5

(a) Before the collision

v1i

(b) After the collision

θ
φ

v2f cos

v1f cos

v1f sin
v1f

v2f
–v2f sin

φ

φ

θ

θ

Figure 9.14 An elastic glancing collision between two particles.

İki parçacığın herangi bir çarpışması içinde x,y ve z doğrultularının herbirinde toplam momentum 
korunur.
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Figure 9.14 An elastic glancing collision between two particles.
Dr. Çağın KAMIŞCIOĞLU, Fizik I, Doğrusal Monentum ve Çarpışmalar 



KÜTLE MERKEZİ

11

9.6 The Center of Mass 269

THE CENTER OF MASS
In this section we describe the overall motion of a mechanical system in terms of a
special point called the center of mass of the system. The mechanical system can
be either a system of particles, such as a collection of atoms in a container, or an
extended object, such as a gymnast leaping through the air. We shall see that the
center of mass of the system moves as if all the mass of the system were concen-
trated at that point. Furthermore, if the resultant external force on the system is
!Fext and the total mass of the system is M, the center of mass moves with an accel-
eration given by a " !Fext /M. That is, the system moves as if the resultant exter-
nal force were applied to a single particle of mass M located at the center of mass.
This behavior is independent of other motion, such as rotation or vibration of the
system. This result was implicitly assumed in earlier chapters because many exam-
ples referred to the motion of extended objects that were treated as particles.

Consider a mechanical system consisting of a pair of particles that have differ-
ent masses and are connected by a light, rigid rod (Fig. 9.17). One can describe the
position of the center of mass of a system as being the average position of the system’s
mass. The center of mass of the system is located somewhere on the line joining the

9.6

This result shows that whenever two equal masses undergo a
glancing elastic collision and one of them is initially at rest,
they move at right angles to each other after the collision.
The same physics describes two very different situations, pro-
tons in Example 9.10 and billiard balls in this example.

55°# $ 35° " 90°  or  # "

 0 " cos(# $ 35°) product of two vectors from Section 7.2, we get

Because the angle between v1f and v2f is # $ 35°,
cos(# $ 35°), and so

(3)

Subtracting (1) from (3) gives

 0 " 2v1f v2f cos(# $ 35°) 

v1i 

2 " v1f 

2 $ v2f 

2 $ 2v1f v2f cos(# $ 35°)

v1f ! v2f " v1f v2f

v1i 

2 " (v1f $ v2f) ! (v1f $ v2f) " v1f 

2 $ v2f 

2 $ 2v1f ! v2f

Figure 9.17 Two particles of un-
equal mass are connected by a
light, rigid rod. (a) The system ro-
tates clockwise when a force is ap-
plied between the less massive par-
ticle and the center of mass. 
(b) The system rotates counter-
clockwise when a force is applied
between the more massive particle
and the center of mass. (c) The sys-
tem moves in the direction of the
force without rotating when a force
is applied at the center of mass.

CM

(a)

(b)

(c)

CM

CM

This multiflash photograph shows that as the acrobat executes a somersault, his center of mass
follows a parabolic path, the same path that a particle would follow.

6.7
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particles and is closer to the particle having the larger mass. If a single force is ap-
plied at some point on the rod somewhere between the center of mass and the less
massive particle, the system rotates clockwise (see Fig. 9.17a). If the force is applied
at a point on the rod somewhere between the center of mass and the more massive
particle, the system rotates counterclockwise (see Fig. 9.17b). If the force is applied
at the center of mass, the system moves in the direction of F without rotating (see
Fig. 9.17c). Thus, the center of mass can be easily located.

The center of mass of the pair of particles described in Figure 9.18 is located
on the x axis and lies somewhere between the particles. Its x coordinate is

(9.27)

For example, if and we find that That is, the
center of mass lies closer to the more massive particle. If the two masses are equal,
the center of mass lies midway between the particles.

We can extend this concept to a system of many particles in three dimensions.
The x coordinate of the center of mass of n particles is defined to be

(9.28)

where xi is the x coordinate of the ith particle. For convenience, we express the to-
tal mass as where the sum runs over all n particles. The y and z coordi-
nates of the center of mass are similarly defined by the equations

(9.29)

The center of mass can also be located by its position vector, rCM . The carte-
sian coordinates of this vector are xCM , yCM , and zC M , defined in Equations 9.28
and 9.29. Therefore,

(9.30)

where ri is the position vector of the ith particle, defined by

Although locating the center of mass for an extended object is somewhat
more cumbersome than locating the center of mass of a system of particles, the ba-
sic ideas we have discussed still apply. We can think of an extended object as a sys-
tem containing a large number of particles (Fig. 9.19). The particle separation is
very small, and so the object can be considered to have a continuous mass distribu-
tion. By dividing the object into elements of mass !mi , with coordinates xi , yi , zi ,
we see that the x coordinate of the center of mass is approximately

with similar expressions for yCM and zCM . If we let the number of elements n ap-
proach infinity, then xCM is given precisely. In this limit, we replace the sum by an

xCM !
"
i
xi !mi

M

ri " xi i # yi j # zik

rCM "
"
i
miri

M
 

  $
"
i
mixi i # "

i
miyi j # "

i
mizik

M

rCM $ xCMi # yCM j # zCMk 

yCM "
"
i
 miyi

M
  and  zCM "

"
i
 mizi

M

M " "
i
mi ,

xCM "
m1x1 # m2x2 # m3x3 # %%% # mnxn

m1 # m2 # m3 # %%% # mn
$

"
i
mixi

"
i
mi

xCM $ 2
3d.m2 $ 2m1 ,x2 $ d,x1 $ 0,

xCM "
m1x1 # m2x2

m1 # m2

Vector position of the center of
mass for a system of particles

Figure 9.18 The center of mass
of two particles of unequal mass on
the x axis is located at xCM , a point
between the particles, closer to the
one having the larger mass.

Figure 9.19 An extended object
can be considered a distribution of
small elements of mass !mi . The
center of mass is located at the vec-
tor position rCM , which has coordi-
nates xCM , yCM , and zCM .
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