Calculus Lecture 1

Oktay Ölmez and Serhan Varma

A brief summary of the concept of functions

A brief summary of the concept of functions

Definition

A function is a rule that assigns to each element in a set A one and only one element in a set B.

A brief summary of the concept of functions

A brief summary of the concept of functions

- The set A is called the domain of the function.

A brief summary of the concept of functions

DOMAIN

- The set A is called the domain of the function.
- If x is an element in the domain of a function f, then the element in B that f associates with x is written $f(x)$ (read f of x) and is called the value of f at x.

A brief summary of the concept of functions

DOMAIN

- The set A is called the domain of the function.
- If x is an element in the domain of a function f, then the element in B that f associates with x is written $f(x)$ (read f of x) and is called the value of f at x.
- The set comprising all the values assumed by $y=f(x)$ as x takes on all possible values in its domain is called the range of the function f.

Example

An open box is to be made from a rectangular piece of cardboard 16 inches long and 10 inches wide by cutting away identical squares (x inches by x inches) from each corner and folding up the resulting flaps. Find an expression that gives the volume V of the box as a function of x. What is the domain of the function?

Example

An open box is to be made from a rectangular piece of cardboard 16 inches long and 10 inches wide by cutting away identical squares (x inches by x inches) from each corner and folding up the resulting flaps. Find an expression that gives the volume V of the box as a function of x. What is the domain of the function?

Solution

$$
V(x)=(16-2 x)(10-2 x) x
$$

Example

An open box is to be made from a rectangular piece of cardboard 16 inches long and 10 inches wide by cutting away identical squares (x inches by x inches) from each corner and folding up the resulting flaps. Find an expression that gives the volume V of the box as a function of x. What is the domain of the function?

Solution

$$
V(x)=(16-2 x)(10-2 x) x
$$

To find the domain, we need to consider the following inequalities:

$$
16-2 x>0 \quad 10-2 x>0 \quad x>0
$$

Thus the domain is $(0,5)$.

Example

Find the domain of the each function:

- (a) $\sqrt{x-1}$
- (b) $\frac{1}{x^{2}-4}$
- (c) $x^{2}+3$

Example

Find the domain of the each function:

- (a) $\sqrt{x-1}$
- (b) $\frac{1}{x^{2}-4}$
- (c) $x^{2}+3$

Answers

- (a) $x \geq 1$
- (b) $\mathbb{R} \backslash\{ \pm 2\}$
- (c) \mathbb{R}

Graph of a Function of One Variable

Definition

The graph of a function f is the set of all points (x, y) in the $x y$-plane such that x is in the domain of f and $y=f(x)$.

Graph of a Function of One Variable

Definition

The graph of a function f is the set of all points (x, y) in the $x y$-plane such that x is in the domain of f and $y=f(x)$.

Example

A Finance Company plans to open two branch offices 2 years from now in two separate locations: an industrial complex and a newly developed commercial center in the city. As a result of these expansion plans, The Company's total deposits during the next 5 years are expected to grow in accordance with the rule where

$$
f(x)=\left\{\begin{array}{cc}
\sqrt{2 x}+20 & \text { if } 0 \leq x \leq 2 \\
\frac{x^{2}}{2}+20 & \text { if } 2<x \leq 5
\end{array}\right.
$$

gives the total amount of money (in millions of dollars) on deposit with the company in year x ($x=0$ corresponds to the present). Sketch the graph of the function f.

Solution

Some special functions: Absolute Value Function

Definition (Absolute value function)

The absolute value function is defined as

$$
f(x)=\left\{\begin{array}{cl}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{array}\right.
$$

Some special functions: Absolute Value Function

Definition (Absolute value function)

The absolute value function is defined as

$$
f(x)=\left\{\begin{array}{cc}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{array}\right.
$$

Some special functions: Absolute Value Function

Definition (Absolute value function)

The absolute value function is defined as

$$
f(x)=\left\{\begin{array}{cl}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{array}\right.
$$

The domain of the absolute value function is the set of all real numbers and the range is the set of all positive real numbers including zero.

Some special functions: Sign Function

Definition (Sign function)

The sign or signum function, sgn, is defined according to

$$
f(x)=\left\{\begin{array}{cl}
1 & \text { if } x>0 \\
0 & \text { if } x=0 \\
-1 & \text { if } x<0
\end{array}\right.
$$

Some special functions: Sign Function

Definition (Sign function)

The sign or signum function, sgn, is defined according to

$$
f(x)=\left\{\begin{array}{cl}
1 & \text { if } x>0 \\
0 & \text { if } x=0 \\
-1 & \text { if } x<0
\end{array}\right.
$$

Some special functions: Floor Function

Definition (Floor function)

Floor function, denoted by $\lfloor x\rfloor$, is defined as the greatest integer less than or equal to any real number. For example, $\lfloor 2.3\rfloor=2,\lfloor 0.4\rfloor=0$ and
$\lfloor-3.1\rfloor=-4$. This function has an infinite number of breaks or steps-one at each integer value in its domain.

Some special functions: Floor Function

Definition (Floor function)

Floor function, denoted by $\lfloor x\rfloor$, is defined as the greatest integer less than or equal to any real number. For example, $\lfloor 2.3\rfloor=2,\lfloor 0.4\rfloor=0$ and
$\lfloor-3.1\rfloor=-4$. This function has an infinite number of breaks or steps-one at each integer value in its domain.

