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Abstract

The goal of this unit is to introduce gene-gene interactions (epistasis) as a significant complicating

factor in the search for disease susceptibility genes. This unit begins with an overview of gene-

gene interactions and why they are likely to be common. Then, it reviews several statistical and

computational methods for detecting and characterizing genes with effects that are dependent on

other genes. The focus of this unit is genetic association studies of discrete and quantitative traits

because most of the methods for detecting gene-gene interactions have been developed

specifically for these study designs.
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INTRODUCTION

One goal of human genetics is to identify genes with specific DNA sequence variations that

increase or decrease susceptibility to disease. Success in this endeavor will depend largely

on the genetic architecture of the disease, which can be defined as the (1) number of genes

that impact disease susceptibility, (2) distribution of alleles and genotypes at those genes,

and (3) manner in which the alleles and genotype impact disease susceptibility (Weiss,

1993). It is anticipated that the genetic architecture of common diseases that represent the

bulk of the public health burden is likely to be very complex (e.g., Moore, 2003; Sing et al.,
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2003; Thornton-Wells et al., 2004; Eichler et al., 2010), i.e., there are likely to be many

susceptibility genes, each with combinations of rare and common alleles and genotypes, that

impact disease susceptibility primarily through nonlinear interactions with genetic and

environmental factors.

There are many phenomena such as phenocopy and locus heterogeneity that contribute to

the complexity of the mapping between genotype and phenotype (Thornton-Wells et al.,

2004). The goal of this unit is to introduce the concept of gene-gene interactions (epistasis)

as a significant complicating factor in the search for disease susceptibility genes. This unit

begins with an overview of gene-gene interactions and why they are likely to be common;

then it reviews several statistical and computational methods for detecting and

characterizing genes with effects that are dependent on other genes. The focus of this unit is

genetic association studies of discrete and quantitative traits (see Weiss, 1993), since most of

the methods for detecting gene-gene interactions have been developed specifically for these

study designs.

WHAT ARE GENE-GENE INTERACTIONS?

The concept of epistasis or gene-gene interaction is not new. In fact, the idea has been

around for at least 100 years and was recognized by early geneticists as an explanation for

deviations from simple Mendelian ratios. William Bateson (1909) has been credited by

Hollander (1955) and more recently by Phillips (1998, 2008) as the first to use the term

epistasis, which literally translated means “resting upon.” A commonly used textbook

definition of epistasis is one gene masking the effects of another gene (e.g., Neel and Schull,

1954; Griffiths et al., 2008). A classic example of epistasis comes from studies of the shape

of seed capsules from crosses of a weedy plant called shepard’s purse (Bursa bursa-

pastoris) by Shull (1914). In this study, crosses from doubly heterozygous plants yielded

Mendelian ratios of fifteen triangular capsules to one oval capsule. It is generally believed

that there are two pathways with dominant loci that lead to the triangular shape. It is only

when both pathways are blocked by recessive alleles that the oval-shaped seed capsule is

produced. This is an example of a recessive-by-recessive interaction since having two

recessive genotypes leads to a different phenotype than with only one from either locus.

The shepard’s purse example from Shull (1914) is an example of biological epistasis, i.e.,

the gene-gene interaction has a biological basis. This is exactly what Bateson (1909) had in

mind when he coined the term. This is in contrast to the concept of statistical epistasis or

epistacy that was first used by Fisher (1918) to describe deviations from additivity in a linear

statistical model. Making biological inferences about epistasis from statistical models can be

difficult (Cordell, 2002; Moore, 2005; Moore and Williams, 2005), although there are some

approaches that take steps towards doing so (e.g., Cheverud and Routman, 1995). Wade et

al. (2001) present useful concepts of biological and statistical epistasis from an alternative,

evolutionary biology perspective.

A simple example of statistical epistasis in the form of penetrance functions is presented in

Table 1.14.1. Penetrance is simply the probability (P) of disease (D) given a particular

combination of genotypes (G) that was inherited, i.e., P[D|G]. The model illustrated in Table
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1.14.1 is an extreme example of epistasis between two single nucleotide polymorphisms

(SNPs) A and B. Let’s assume that AA, aa, BB, and bb have population frequencies of 0.25,

while genotypes Aa and Bb have frequencies of 0.5 (values in parentheses in Table 1.14.1).

What makes this model interesting is that disease risk is entirely dependent on the particular

combination of genotypes inherited. Individuals have a very high risk of disease if they

inherit Aa or Bb but not both (i.e., the exclusive OR function). The penetrance for each

individual genotype in this model is 0.05 and is computed by summing the products of the

genotype frequencies and penetrance values. Thus, in this model there is no difference in

disease risk for each single genotype as specified by the single-genotype penetrance values

(all 0.05). This model is labeled M170 by Li and Reich (2000) in their categorization of

genetic models involving two SNPs and is an example of a pattern that is not linearly

separable. Heritability or the size of the genetic effect is a function of these penetrance

values (e.g., Culverhouse et al., 2002). The model specified in Table 1.14.1 has a heritability

of 0.053, which represents a relatively small genetic effect size. This model is a special case

where all of the heritability is due to epistasis.

WHY ARE GENE-GENE INTERACTIONS LIKELY TO BE COMMON?

Moore (2003) outlines a working hypothesis stating that epistasis is a ubiquitous component

of the genetic architecture of common human diseases. This working hypothesis is based on

both historical and emerging research results.

First, the idea that epistasis is important is not new. As discussed above, the recognition that

deviations from Mendelian ratios are due to interactions between genes has been around for

nearly 100 years. This is important because it is an idea that has prevailed through time and

is still recognized today.

Second, the ubiquity of biomolecular interactions in gene regulation and biochemical and

metabolic systems suggests that the relationship between DNA sequence variations and

clinical endpoints is likely to involve gene-gene interactions. This is perhaps the most

important piece of evidence supporting the working hypothesis. For example, transcription

of any given eukaryotic gene can be regulated by as many as 100 or more different proteins

that act through protein-protein and protein-DNA interactions. It is likely that these

biomolecular interactions are mediated by DNA sequence variations in the genes that

encode the individual proteins.

Third, positive results from studies of single polymorphisms typically do not replicate across

independent samples. This is true for both linkage and association studies. For example,

Hirschhorn et al. (2002) reviewed more than 600 association studies for consistency of

results. Of those in which the same polymorphism had been studied in three or more

independent samples, there were only six results that were consistently replicated. While

many of these conflicting reports arose from inadequately powered or designed studies, the

majority of the conflicting results cannot be explained. Moore and Williams (2002) suggest

that one reason studies of single polymorphisms typically do not replicate across

independent samples is because gene-gene interactions are more important.
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Fourth, gene-gene interactions are commonly found when properly investigated (see

Templeton, 2000).

Why is epistasis so difficult to detect? What is the proper way to detect epistasis? These

questions are addressed in the next several sections.

WHY ARE GENE-GENE INTERACTIONS DIFFICULT TO DETECT?

Epistasis is difficult to detect and characterize using traditional parametric statistical

methods such as linear and logistic regression because of the sparseness of the data in high

dimensions. That is, when interactions among multiple polymorphisms are considered, there

are many multilocus genotype combinations that have very few or no data points. For

example, with two SNPs that each has three genotypes, there are nine two-locus genotype

combinations (e.g., Table 1.14.1). In the case of three SNPs, there are 27 three-locus

genotype combinations. Thus, as each additional SNP is considered, the number of

multilocus genotype combinations goes up exponentially. The result of this added

dimensionality is that exponentially larger sample sizes are needed to have enough data to

estimate the interaction effects. This phenomenon has been referred to as the curse of

dimensionality (Bellman, 1961); for methods such as logistic regression, it can lead to

parameter estimates that have very large standard errors, resulting in an increase in type I

errors (see APPENDIX 3M) Concato et al., 1993; Peduzzi et al., 1996; Hosmer and

Lemeshow, 2000).

In addition, detecting gene-gene interactions using traditional procedures for fitting

regression models can be problematic, leading to an increase in type II errors and a decrease

in power (see APPENDIX 3M). For example, forward selection (see Neter, 1990) is limited

because interactions are only tested for those variables that have a statistically significant

independent main effect. Those DNA sequence variations that have an interaction effect, but

no or minimal main effect, will be missed. With backward elimination (see Neter, 1990), a

complete model that includes all main effects and all interaction terms may require too many

degrees of freedom. Stepwise procedures are more flexible than either forward selection or

backward elimination, but can also suffer from requiring too many degrees of freedom.

Detecting interactions among variables is a well-known challenge in statistics and data

mining (Freitas, 2001).

METHODS FOR DETECTING GENE-GENE INTERACTIONS IN

ASSOCIATION STUDIES OF DISCRETE TRAITS

Logistic Regression

Logistic regression is the workhorse of modern epidemiology. This approach is popular

because it produces outputs in the range of 0 to 1 that can be used with a threshold to model

discrete endpoints such as case-control status. Logistic regression models the probability of

disease (p) as a linear function of independent variables (see Hosmer and Lemeshow, 2000;

Kleinbaum and Klein, 2002). A logit transformation of p, ln[p/(1 – p)], is used to prevent p

from taking on values less than zero or greater than one. By expressing the linear function in

terms of exponentials, p can be modeled as p = (eα + βX)/(1 + eα + βX), where e is the
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exponential, α and β are regression coefficients (i.e., parameters), and X is an independent

variable. For a discrete independent variable such as a polymorphism, an odds ratio relating

genotypes to probability of disease can be estimated from eα. The independent main effects

of two polymorphisms, A and B, can be modeled as p = (eα+β1A+β2B)/(1+eα+β1A+β2B). The

interaction between A and B can be modeled by adding a product term of the form β3AB to

the equation. A test of the null hypothesis of no interaction can be carried out by testing

whether β3 = 0. Rejection of this null hypothesis provides evidence for an interaction on a

multiplicative scale.

The advantage of logistic regression is that interactions can be modeled relatively easily, the

statistical theory is very well characterized, and the approach can be implemented on a

standard desktop computer using a variety of freely and commercially available statistical

packages. As described in the above section, an important disadvantage is that very large

sample sizes are needed to accurately estimate the parameters in the model when there are

many independent variables. Marchini et al. (2005) explored the role of logistic regression

for detecting gene-gene interactions in the presence of independent effects on a genome-

wide scale and found that models that included interactions were more powerful than

traditional main effects models when the interaction effects were large relative to the main

effects.

Several studies provide guidance on evaluating the power of a planned gene-gene interaction

study using logistic regression. For example, the Power program of Garcia-Closas and Lubin

and Gails (1999) allows estimation of sample size and power for two-locus interactions in

both cohort and case-control studies. This program is available for free from http://

dceg.cancer.gov/tools/design/POWER and is relatively easy to use. An additional program

called Quanto is freely available from http://hydra.usc.edu/gxe for estimation of sample size

and power in matched case-control, case-sibling, case-parent, and case-only designs. The

software and methods are described in detail by Gauderman (2002).

Several alternatives to standard logistic regression for discrete clinical endpoints have also

been developed. For example, Hoh et al. (2000) and Hoh and Ott (2001) have developed a

combination of sequential and resampling methods for summing associations statistics to

detect combined effects of multiple SNPs. This approach uses standard statistics in a novel

way to detect multilocus effects. Application of this method to a coronary artery restenosis

case-control data set yielded a highly significant interaction among seven SNPs from seven

different genes (Zee et al., 2002). These associations would not have been identified using

standard logistic regression analysis due to a lack of degrees of freedom for estimating all

the interactions terms. The use of penalized logistic regression (Park and Hastie, 2008;

Winham, 2011) shows some promise for overcoming some of these limitations.

The use of logic functions for defining new variables that can be included in a logistic

regression analysis may also be useful (Kooperberg et al., 2001). Software for logic

regression is freely available as a package for the logistic regression analysis model (R; see

http://www.r-project.org). The focused interaction testing framework (FITF) of Millstein et

al. (2006) provides a staged likelihood ratio-based approach to detecting interactions using

logistic regression. The FITF software is freely available from http://hydra.usc.edu/fitf.
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Multifactor Dimensionality Reduction

An alternative and complimentary method to logistic regression, reviewed by Cordell

(2009), is multifactor dimensionality reduction (MDR). MDR was developed as a

nonparametric (i.e., no parameters are estimated) and genetic-model-free (i.e., no genetic

model is assumed) data mining strategy for identifying combinations of discrete genetic and

environmental factors that are predictive of a discrete clinical endpoint (Ritchie et al., 2001,

2003; Hahn et al., 2003; Hahn and Moore, 2004; Moore, 2004, 2007; Moore et al., 2006;

Velez et al., 2007). Unlike most other methods, MDR was designed to detect interactions in

the absence of detectable main effects and thus complements approaches such as logistic

regression.

At the heart of the MDR approach is a feature or attribute construction algorithm that creates

a new variable or attribute by pooling, e.g., genotypes from multiple SNPS. The process of

defining a new attribute as a function of two or more other attributes is referred to as

constructive induction or attribute construction and was first developed by Michalski (1983).

Constructive induction using the MDR kernel is accomplished in the following way. Given a

threshold T, a multilocus genotype combination is considered high-risk if the ratio of cases

(subjects with disease) to controls (healthy subjects) exceeds T; otherwise, it is considered

low-risk. Genotype combinations considered to be high-risk are labeled G1 while those

considered low-risk are labeled G0. This process constructs a new one-dimensional attribute

with levels G0 and G1. It is this new single variable that is assessed using any classification

method. The MDR method is based on the idea that changing the representation space of the

data will make it easier for a classifier such as a decision tree or a naive Bayes learner to

detect attribute dependencies (see Hastie et al., 2001). Open-source software in Java and C

are freely available from http://www.epistasis.org.

Consider the simple example presented above and in Table 1.14.1. This penetrance function

was used to simulate a data set with 200 cases (diseased subjects) and 200 controls (healthy

subjects) for a total of 400 instances. All attributes in these data sets are categorical. The

SNPs each have three levels (0, 1, 2) while the class has two levels (0, 1) that code controls

and cases. Figure 1.14.1A illustrates the distribution of cases (left bars) and controls (right

bars) for each of the three genotypes of SNP1 and SNP2. The dark-shaded cells have been

labeled “high-risk” using a threshold of T = 1. The light-shaded cells have been labeled

“low-risk.” Note that when considered individually, the ratio of cases to controls is close to

1 for each single genotype. Figure 1.14.1B illustrates the distribution of cases and controls

when the two functional SNPs are considered jointly. Note the larger ratios that are

consistent with the genetic model in Table 1.14.1. Also illustrated in Figure 1.14.1B is the

distribution of cases and controls for the new single attribute constructed using MDR. This

new single attribute captures much of the information from the interaction and could be

assessed using logistic regression, for example.

Since its initial description by Ritchie et al. in 2001, numerous extensions and variations on

the MDR method have been developed, including, for example, the incorporation of odds

ratios (Chung et al., 2007) and Fisher's exact test (Gui et al., 2011) to increase model

robustness, the implementation of generalized linear models (Lou et al., 2007) and other
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model based methods (Calle et al., 2008, 2010) that can accomodate discreet and continuous

outcomes, entropy-based interpretation methods (Moore et al., 2006), permutation testing

methods (Edwards et al., 2010; Greene et al., 2010a; Pattin et al., 2009), and different

evaluation metrics (Bush et al., 2008; Mei et al., 2007; Namkung et al., 2009a). Methods

have also been developed to handle imbalanced data (Valez et al., 2007), missing data

(Namkung et al., 2009b), sparse or empty cells (Lee et al., 2007), covariate adjustment (Lou

et al., 2007, Calle et al., 2008, Gui et al., 2011) and family data (Cattaert et al., 2010; Lou et

al., 2008; Martin et al., 2006).The MDR method and its variations have been successfully

applied to detecting gene-gene and gene-environment interactions for a wide variety of

different common human diseases and clinical endpoints including, e.g., bladder cancer

(Andrew et al., 2006, 2008; Chen et al. 2007; Huang et al. 2007), amytrophic lateral

sclerosis (ALS) (Green et al., 2010b), and eczema (Mahachie et al., 2010). The MDR

method has also been proposed for studies in pharmacogenetics and toxicogenetics (e.g.,

Wilke et al., 2005).

METHODS FOR DETECTING GENE-GENE INTERACTIONS IN

ASSOCIATION STUDIES OF QUANTITATIVE TRAITS

Linear Regression

Linear regression is a popular choice for modeling quantitative traits because the models are

easy to interpret and there is a well formulated mathematical theory underlying the method.

Linear regression is a parametric statistical approach for modeling a continuous outcome

variable (Y) as a linear function of discrete and/or continuous predictor variables (X1, X2,

etc.). The linear model relating X to Y looks something like Y = β0 + β1X1 + β2X2 + ε, where

β0 is the intercept, β1 and β2 are the regression coefficients, and ε is the unexplained error in

the model. In this model, the slope or regression of Y on X1 is constant across the range of

values for X2. This means that the relationship between Y and X1 is independent of X2. Thus,

the effects of the two predictor variables are purely additive. Deviations from additivity (i.e.,

interaction) can be measured by including a product term in the model as seen above for

logistic regression. Here, the term β3X1X2 would be added to account for any interaction.

The presence of an interaction term in the linear model allows there to be a different

regression relationship between Y and X1 for each value of X2. Thus, the null hypothesis of

no interaction is equivalent to β3 = 0. For genetic studies, it is customary to encode

polymorphisms as dummy variables that specify certain types of genetic effects. Each

polymorphism with N genotypes should be encoded by N – 1 dummy variables. A detailed

description of linear regression methods is given by Neter et al. (1990). The use of linear

regression to test for interactions is presented in detail by Aiken and West (1991). Details

about power calculations for linear regression are provided by Cohen (1988).

As with logistic regression, advantages of linear regression are that interactions can be

modeled relatively easily, the statistical theory is very well characterized, and the approach

can be implemented on a standard desktop computer using a variety of freely and

commercially available statistical packages. However, an important disadvantage is that

very large sample sizes are needed to accurately estimate the parameters in the model when

there are many independent variables. The limitations of linear regression approaches for
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detecting gene-gene interactions have been described by Wahlsten (1990). Some examples

of using linear regression to detect gene-gene interactions include Hamon et al. (2004) and

Asselbergs et al. (2007). Alternative methods for analyzing quantitative traits include MDR

(Lou, 2007) and the combinatorial partitioning method, which will be discussed in the next

section.

Combinatorial Partitioning Method

The combinatorial partitioning method (CPM) of Nelson et al. (2001) is one of the few

alternatives to linear regression that have been developed. The CPM simultaneously

considers multiple polymorphic loci to identify combinations of genotypes that are most

strongly associated with variation in a quantitative trait. First, all possible multilocus

genotypes are identified, and this multilocus genotype space is divided into partitions

(groups that include one or more of the possible genotypes). The partitions are combined

into sets in which every possible genotype in the multilocus genotype space is included in

one, and only one, of the partitions of that set. Each possible set is then evaluated by two

criterion: 1. if the proportion of explained variability in the quanitiative trait exceeds a

predetermined threshold, using a method based on within- and between-partition variance

(see Nelson, 2001 for details) 2. if the number of observations in each partition exceeds a

pre-determined lower bound, e.g. 5, to ensure sufficient degrees of freedom for reliable

within-partition estimates. Those sets that pass these criteria are then validated using multi-

fold cross-validation (Stone, 1978). From the collection of validated sets, the most predictive

sets are chosen to make inferences about the genotype-phenotype relationships using

methods such as simple linear regression as described above. As with MDR, the partitioning

of CPM serves to collapse the multiple dummy variables needed to encode multiple

polymorphisms and their interactions intofewer variables (i.e., constructive induction),

thereby reducing the dimensionality associated with modeling interactions..

When applied to modeling the relationship between eighteen diallelic loci from six

cardiovascular disease susceptibility genes and interindividual variability in plasma

triglycerides, Nelson et al. (2001) found nonadditive epistatic interactions between multiple

loci. Although preliminary, these results suggest that CPM may be a valuable tool for the

exploratory analysis of nonadditive gene-gene interactions. This is also the conclusion of

Moore et al. (2002a,b), who applied CPM in an exploratory analysis of interactions among

arterial thrombosis candidate genes. While CPM may provide a powerful alternative to

linear regression, there are several important limitations, the most important of which is that

the approach is very computationally intensive, since it must combinatorially sift through

many genotype partitions. To address this limitation, Culverhouse et al. (2004) have

developed the restricted partitioning method (RPM), which restricts the number of genotypic

partitions evaluated. While CPM searches over all possible partitions, RPM only evaluates

those partitions whose genotypes have statistically similar mean values of the quantitative

trait. The reasoning is that partitions with large within-partition variance are unlikely to

explain sufficient variability in the quanitiative trait. Interestingly, this method has been

extended to case-control data and may complement the MDR method discussed earlier

(Culverhouse, 2007, Hua, 2010).
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DETECTING GENE-GENE INTERACTIONS ON A GENOME-WIDE SCALE

Biomedical sciences are undergoing an information explosion and an understanding

implosion. That is, our ability to generate data is far outpacing our ability to interpret it. This

is especially true in the domain of human genetics, where it is now technically and

economically feasible to measure over a million SNPs across the human genome in each

individual. An important goal in human genetics is to determine which of the multitude of

genetic variants are useful for predicting who is at risk for common diseases. This genome-

wide approach was expected to revolutionize the genetic analysis of common human

diseases (Hirschhorn and Daly, 2005; Wang et al., 2005) and quickly replaced the traditional

candidate-gene approach that focuses on several genes selected by their known or suspected

function. The success of GWAS studies in identifying the genetic underpinnings of common

diseases has been limited, however, and some of the unexplained heretability of common

diseases may be explained by gene-gene interactions (Eichler et. al., 2010).

Moore and Ritchie (2004) have outlined three significant challenges that must be overcome

to successfully identify nonadditive gene-gene interactions using a genome-wide approach.

First, powerful data mining and machine learning methods will need to be developed to

statistically model the relationship between combinations of DNA sequence variations and

disease susceptibility. The MDR and CPM approaches were discussed above as alternatives

to logistic and linear regression. A second challenge is the selection of genetic features or

attributes that should be included for analysis. If interactions between genes explain most of

the heritability of common diseases, then combinations of DNA sequence variations will

need to be evaluated from a list of thousands of candidates. Filter and wrapper methods will

play an important role because there are more combinations than can be exhaustively

evaluated. A third challenge is the interpretation of gene-gene interaction models. Although

a statistical model can be used to identify DNA sequence variations that confer risk for

disease, this approach cannot be translated into specific prevention and treatment strategies

without interpreting the results in the context of human biology. Making etiological

inferences from computational models may be the most important and the most difficult

challenge of all (Moore and Williams, 2005).

Combining the concept of nonadditive interaction described above with the challenge of

variable selection yields what Goldberg (2002) calls a needle-in-a-haystack problem. That

is, there may be a particular combination of SNPs that together with the right nonlinear

function are a significant predictor of disease susceptibility. However, individually they may

not look any different than thousands of other SNPs that are not involved in the disease

process and are thus noisy. Under these models, the computational algorithm is truly looking

for a genetic needle in a genomic haystack. A report from the International HapMap

Consortium (Altshuler et al., 2005) suggests that approximately 300,000 carefully selected

SNPs may be necessary to capture all of the relevant variation across the Caucasian human

genome. Assuming this is true (it is probably a lower boundary), one would need to scan 4.5

× 1010 pairwise combinations of SNPs to find a genetic needle. The number of higher-order

combinations is astronomical. Indeed, the current state of the art chips genotype over a

million SNPs, leading to over 5.0 × 1011 pairwise combinations. What is the optimal

approach to this problem?
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Two approaches are generally used to select attributes for predictive models. The filter

approach preprocesses the data by algorithmically or statistically assessing the quality or

relevance of each variable and then using that information to select a subset for

classification. The wrapper approach iteratively selects subsets of attributes for classification

using either a deterministic or stochastic algorithm. The key difference between the two

approaches is that the classifier plays no role in selecting which attributes to consider in the

filter approach. As Freitas (2002) reviews, the advantage of the filter is speed, while the

wrapper approach has the potential to do a better job classifying. Filter strategies, such as

Relief (Kira and Rendell, 1992) and stochastic wrapper strategies such as genetic

programming (Moore and White, 2006, 2007a,b) show promise for attribute selection

(Moore, 2007). Recent extensions that have improved the power of Relief include Tuned

ReliefF (TURF) (Moore et al., 2006), Spatially Uniform ReliefF (SURF) (Greene et al.,

2009), and SURF* (Greene et al., 2010c). The Explicit Test of Interaction can also be used

to pre-select SNPs that are likely to interact with other SNPs in relation to the outcome

(Greene et al., 2010a).

The accumulated biological knowledge about the structure and function of various genes can

also be used to prioritize which genetic variations to analyze and thus reduce the number of

gene-gene interaction tests performed (Moore et. al, 2010). For example, expert knowledge

about Gene Ontology (GO), chromosomal location, protein-protein interactions (Pattin and

Moore, 2008, Emily et. al., 2009), and regulatory networks (Cowper-Sal Lari et. al., 2010)

could all be used as biological filters. Some approaches to integrate expert knowledge into

gene-gene interaction analyses include the Biofilter algorithm presented by Bush et. al.

(2009) and the INTERSNP software package introduced by Herold et. al. (2009). Askland

et. al. (2009) also demonstrated how the exploratory visual analysis (EVA) method can be

used to select SNPs in specific pathways and GO groups. Additional work in this area is

needed.

As sequencing technology advances, it is rapidly becoming feasible to sequence the entire

genome of individuals for genetic analysis studies (Mardis, 2011). With whole genome

sequences, the data available for analyses will grow dramatically and data mining and

machine learning methods will become increasingly essential.

SUMMARY

This unit defines epistasis or gene-gene interaction and provides a rationale for why such

interactions are likely to be common and why they are difficult to detect. Further, the unit

summarizes several traditional and several new statistical and computational methods for

detecting gene-gene interactions in association studies of both discrete and continuous traits.

This brief introduction provides the foundation necessary to better understand the nature of

gene-gene interactions and provides a starting point for deciding on an analytical approach

for detecting interactions in epidemiological and genetic studies of common human diseases.

Extending these methods to the analysis of genome-wide association data is a significant

challenge that still needs to be addressed.

Gilbert-Diamond and Moore Page 10

Curr Protoc Hum Genet. Author manuscript; available in PMC 2014 July 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Acknowledgments

The authors are grateful to Davnah Urbach for her insightful suggestions for improving this manuscript. This work
was financially supported by Grant R25CA134286 from the National Cancer Institute, NIH.

LITERATURE CITED

Aiken, LS.; West, SG. Multiple Regression: Testing and Interpreting Interactions. Thousand Oaks,
Calif.: Sage Publications; 1991.

Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Donnelly P. International HapMap
Consortium. A haplotype map of the human genome. Nature. 2005; 437:1299–1320. [PubMed:
16255080]

Andrew AS, Nelson HH, Kelsey KT, Moore JH, Meng AC, Casella DP, Tosteson TD, Schned AR,
Karagas MR. Concordance of multiple analytical approaches demonstrates a complex relationship
between DNA repair gene SNPs, smoking, and bladder cancer susceptibility. Carcinogenesis. 2006;
27:1030–1037. [PubMed: 16311243]

Andrew AS, Karagas MR, Nelson HH, Guarrera S, Polidoro S, Gamberini S, Sacerdote C, Moore JH,
Kelsey KT, Demidenko E, Vineis P, Matullo G. DNA repair polymorphisms modify bladder cancer
risk: A multifactor analytic strategy. Hum Hered. 2008; 65:105–118. [PubMed: 17898541]

Askland K, Read C, Moore J. Pathways-based analyses of whole-genome association study data in
bipolar disorder reveal genes mediating ion channel activity and synaptic neurotransmission. Hum.
Genet. 2009; 125:63–79. [PubMed: 19052778]

Asselbergs FW, Williams SM, Hebert PR, Coffey CS, Hillege HL, Navis G, Vaughan DE, van Gilst
WH, Moore JH. Epistatic effects of polymorphisms in genes from the renin-angiotensin, bradykinin,
and fibrinolytic systems on plasma t-PA and PAI-1 levels. Genomics. 2007; 89:362–369. [PubMed:
17207964]

Bateson, W. Mendel’s Principles of Heredity. Cambridge: Cambridge University Press; 1909.

Bellman, R. Adaptive Control Processes. Princeton, N. J.: Princeton University Press; 1961.

Bush WS, Edwards TL, Dudek SM, McKinney BA, Ritchie MD. Alternative contingency table
measures improve the power and detection of multifactor dimensionality reduction. BMC
Bioinform. 2008; 9:238–255.

Bush WS, Dudek SM, Ritchie MD. Biofilter: A knowledge-integration system for the multi-locus
analysis of genome-wide association studies. Pac. Symp. Biocomput. 2009:368–379. [PubMed:
19209715]

Calle ML, Urrea V, Vellalta G, Malats N, Steen KV. Improving strategies for detecting genetic
patterns of disease susceptibility in association studies. Stat. Med. 2008; 27:6532–6546. [PubMed:
18837071]

Calle ML, Urrea V, Malats N, Van Steen K. mbmdr: An R package for exploring gene–gene
interactions associated with binary or quantitative traits. Bioinformatics. 2010; .26:2198–2199.
[PubMed: 20595460]

Cattaert T, Urrea V, Naj AC, De Lobel L, De Wit V, Fu M, Mahachie John JM, Shen H, Calle ML,
Ritchie MD, Edwards TL, Van Steen K. FAM-MDR: A flexible family-based multifactor
dimensionality reduction technique to detect epistasis using related individuals. PLoS ONE. 2010;
5:e10304. [PubMed: 20421984]

Chen M, Kamat AM, Huang M, Grossman HB, Dinney CP, Lerner SP, Wu X, Gu J. High-order
interactions among genetic polymorphisms in nucleotide excision repair pathway genes and
smoking in modulating bladder cancer risk. Carcinogenesis. 2007; 28:2160–2165. [PubMed:
17728339]

Cheverud JM, Routman EJ. Epistasis and its contribution to genetic variance components. Genetics.
1995; 139:1455–1461. [PubMed: 7768453]

Chung Y, Lee SY, Elston RC, Park T. Odds ratio based multifactor-dimensionality reduction method
for detecting gene-gene interactions. Bioinformatics. 2007; 23:71–76. [PubMed: 17092990]

Cohen, J. Statistical Power Analysis for the Behavioral Sciences. Mahwah, N.J.: Lawrence Erlbaum
Associates; 1988.

Gilbert-Diamond and Moore Page 11

Curr Protoc Hum Genet. Author manuscript; available in PMC 2014 July 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Concato J, Feinstein AR, Holford TR. The risk of determining risk with multivariable models. Ann.
Intern. Med. 1993:118201–118210.

Cordell HJ. Epistasis: What it means, what it doesn’t mean, and statistical methods to detect it in
humans. Hum Mol Genet. 2002; 11:2463–2468. [PubMed: 12351582]

Cordell HJ. Genome-wide association studies: Detecting gene–gene interactions that underlie human
diseases. Nat. Rev. Genet. 2009; 10:392–404. [PubMed: 19434077]

Cowper-Sal Lari R, Cole MD, Karagas MR, Lupien M, Moore JH. Layers of epistasis: genome-wide
regulatory networks and network approaches to genome-wide association studies. Wiley
Interdiscip Rev Syst Biol Med. 2010 (In Press).

Culverhouse R. The use of the restricted partition method with case-control data. Hum. Hered. 2007;
63:93–100. [PubMed: 17283438]

Culverhouse R, Suarez BK, Lin J, Reich T. A perspective on epistasis: Limits of models displaying no
main effect. Am. J. Hum. Genet. 2002; 70:461–471. [PubMed: 11791213]

Culverhouse R, Klein T, Shannon W. Detecting epistatic interactions contributing to quantitative traits.
Genet. Epidemiol. 2004; 27:141–152. [PubMed: 15305330]

Edwards TL, Turner SD, Torstenson ES, Dudek SM, Martin ER, Ritchie MD. A general framework
for formal tests of interaction after exhaustive search methods with applications to MDR and
MDR-PDT. PLoS ONE. 2010; 5:e9363. [PubMed: 20186329]

Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH. Missing heritability and
strategies for finding the underlying causes of complex disease. Nature Review Genetics. 2010;
11:446–450.

Emily M, Mailund T, Hein J, Schauser L, Schierup MH. Using biological networks to search for
interacting loci in genome-wide association studies. Eur. J. Hum. Genet. 2009; 17:1231–1240.
[PubMed: 19277065]

Fisher RA. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R.
Soc. Edinb. 1918; 52:399–433.

Freitas AA. Understanding the crucial role of attribute interaction in data mining. Artif. Intel. Rev.
2001; 16:177–199.

Freitas, AA. Data Mining and Knowledge Discovery with Evolutionary Algorithms. New York:
Springer; 2002.

Garcia-Closas M, Lubin JH. Power and sample size calculations in case-control studies of gene-
environmental interactions: Comments on different approaches. Am. J. Epidemiol. 1999; 149:689–
693. [PubMed: 10206617]

Gauderman WJ. Sample size requirements for association studies of gene-gene interaction. Am. J.
Epidemiol. 2002; 155:478–484. [PubMed: 11867360]

Goldberg, DE. The Design of Innovation. Boston: Kluwer; 2002.

Greene CS, Penrod, N.M, Kiralis J, Moore JH. Spatially uniform reliefF (SURF) for computationally-
efficient filtering of gene-gene interacitons. BioData Mining. 2009; 2:5–14. [PubMed: 19772641]

Greene CS, Himmelstein DS, Nelson HH, Kelsey KT, Williams SM, Andrew AS, Karagas MR, Moore
JH. Enabling personal genomics with an explicit test of epistasis. Pac. Symp. Biocomput. 2010a:
327–336. [PubMed: 19908385]

Greene CS, Sinnott-Armstrong NA, Himmelstein DS, Park PJ, Moore JH, Harris BT. Multifactor
dimensionality reduction for graphics processing units enables genome-wide testing of epistasis in
sporadic ALS. Bioinformatics. 2010b; 26:694–695. [PubMed: 20081222]

Greene CS, Himmelstein DS, Kiralis J, Moore JH. The Informative Extremes: Using Both Nearest and
Farthest Individuals Can Improve Relief Alogorithms in the Domain of Human Genetics. EvoBIO
2010, LNCS. 2010c; 6023:182–193.

Griffiths, AJF.; Wessler, SR.; Lewontin, RC.; Carroll, SB. Introduction to Genetic Analysis. 9th ed.
New York: W.H. Freeman & Co.; 2008. p. 243

Gui J, Andrew AS, Andrews P, Nelson HH, Kelsey KR, Karagas MR, Moore JH. A robust multifactor
dimensionality reduction method for detecting gene–gene interactions with application to the
genetic analysis of bladder cancer susceptibility. Ann. Hum. Genet. 2011; 75:20–28. [PubMed:
21091664]

Gilbert-Diamond and Moore Page 12

Curr Protoc Hum Genet. Author manuscript; available in PMC 2014 July 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-
gene and gene-environment interactions. Bioinformatics. 2003; 19:376–382. [PubMed: 12584123]

Hahn LW, Moore JH. Ideal discrimination of discrete clinical endpoints using multilocus genotypes. In
Silico Biology. 2004; 4:183–194. [PubMed: 15107022]

Hamon SC, Stengard JH, Clark AG, Salomaa V, Boerwinkle E, Sing CF. Evidence for nonadditive
influence of single nucleotide polymorphisms within the apolipoprotein E gene. Ann. Hum. Genet.
2004; 68:521–535. [PubMed: 15598211]

Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning. New York: Springer;
2001.

Becker T. INTERSNP: Genome-wide interaction analysis guided by a priori information.
Bioinformatics. 2009; 25:3275–3281. [PubMed: 19837719]

Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits.
Nature Reviews Genetics. 2005; 6:95–108.

Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic association
studies. Genet. Med. 2002; 4:45–61. [PubMed: 11882781]

Hoh J, Ott J. A train of thoughts on gene mapping. Theor. Popul. Biol. 2001; 60:149–153. [PubMed:
11855949]

Hoh J, Wille A, Zee R, Cheng S, Reynolds R, Lindpaintner K, Ott J. Selecting SNPs in two-stage
analysis of disease association data: A model-free approach. Ann. Hum. Genet. 2000; 64:413–417.
[PubMed: 11281279]

Hollander WF. Epistasis and hypostasis. J. Hered. 1955; 46:222–225.

Hosmer, DW.; Lemeshow, S. Applied Logistic Regression. New York: John Wiley & Sons; 2000.

Hua X, Zhang H, Zhang H, Yang Y, Kuk AYC. Testing multiple gene interactions by the ordered
combinatorial partitioning method in case-control studies. Bioinformatics. 2010; 26:1871–1878.
[PubMed: 20538724]

Huang M, Dinney CP, Lin X, Lin J, Grossman HB, Wu X. High-order interactions among genetic
variants in DNA base excision repair pathway genes and smoking in bladder cancer susceptibility.
Cancer Epidemiol. Biomarkers Prev. 2007; 16:84–91. [PubMed: 17220334]

Kira, K.; Rendell, L. Proc AAAI'92. San Jose, CA: 1992. The feature selection problem: Traditional
methods and new algorithm.

Kleinbaum, DG.; Klein, M. Logistic Regression: A Self-Learning Text. New York: Springer-Verlag;
2002.

Kooperberg C, Ruczinski I, LeBlanc ML, Hsu L. Sequence analysis using logic regression. Genet.
Epidemiol. 2001; 21:S626–S631. [PubMed: 11793751]

Lee SY, Chung Y, Elston RC, Kim Y, Park T. Log-linear model-based multifactor dimensionality
reduction method to detect gene-gene interactions. Bioinformatics. 2007; 23 2589-90255.

Li W, Reich J. A complete enumeration and classification of two-locus disease models. Hum Hered.
2000; 50:334–349. [PubMed: 10899752]

Lou XY, Chen GB, Yan L, Ma JZ, Zhu J, Elston RC, Li MD. A generalized combinatorial approach
for detecting gene-by-gene and gene-by-environment interactions with application to nicotine
dependence. Am. J. Hum. Genet. 2007; 80:1125–1137. [PubMed: 17503330]

Lubin JH, Gails MH. On power and sample size for studying features of the relative odds of disease.
Am. J. Epidemiol. 1990; 131:552–566. [PubMed: 2301364]

Mahachie JM, Baurecht H, Rodríguez E, Naumann A, Wagenpfeil S, Klopp N, Mempel M, Novak N,
Bieber T, Wichmann HE, Ring J, Illig T, Cattaert T, Van Steen K, Weidinger S. Analysis of the
high affinity IgE receptor genes reveals epistatic effects of FCER1A variants on eczema risk.
Allergy. 65:875–882. [PubMed: 20028371]

Marchini J, Donnelly P, Cardon LR. Genome-wide strategies for detecting multiple loci that influence
complex diseases. Nat Genet. 2005; 37:413–417. [PubMed: 15793588]

Mardis E. A decade's perspective on DNA sequencing technology. Nature. 2011; 470:198–203.
[PubMed: 21307932]

Gilbert-Diamond and Moore Page 13

Curr Protoc Hum Genet. Author manuscript; available in PMC 2014 July 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Martin ER, Hahn LW, Bass M, Ritchie MD, Moore JH. A combined multifactor dimensionality
reduction and pedigree disequilibrium test (MDR-PDT) approach for detecting gene-gene
interactions in pedigrees. Genet. Epidemiol. 2006; 30:111–123. [PubMed: 16374833]

Mei H, Cuccaro ML, Martin ER. Multifactor dimensionality reduction-phenomics: A novel method to
capture genetic heterogeneity with use of phenotypic variables. Am. J. Hum. Genet. 2007;
81:1251–1261. [PubMed: 17999363]

Michalski RS. A theory and methodology of inductive learning. Artif. Intell. 1983; 20:111–161.

Millstein J, Conti DV, Gilliland FD, Gauderman WJ. A testing framework for identifying
susceptibility genes in the presence of epistasis. Am. J. Hum. Genet. 2006; 78:15–27. [PubMed:
16385446]

Moore JH. The ubiquitous nature of epistasis in determining susceptibility to common human diseases.
Hum. Hered. 2003; 56:73–83. [PubMed: 14614241]

Moore JH. Computational analysis of gene-gene interactions in common human diseases using
multifactor dimensionality reduction. Expert Rev. Mol. Diag. 2004; 4:795–803.

Moore JH. A global view of epistasis. Nat Genet. 2005; 37:13–14. [PubMed: 15624016]

Moore, JH. Genome-wide analysis of epistasis using multifactor dimensionality reduction: Feature
selection and construction in the domain of human genetics. In: Zhu, X.; Davidson, I., editors.
Knowledge Discovery and Data Mining: Challenges and Realities with Real World Data. Hershey,
Penn.: IGI Global; 2007. p. 17-30.

Moore JH, Ritchie MD. The challenges of whole-genome approaches to common diseases. JAMA.
2004; 291:1642–1643. [PubMed: 15069055]

Moore JH, White BC. Exploiting expert knowledge in genetic programming for genome-wide genetic
analysis. Lect. Notes Comput. Sc. 2006; 4193:696–977.

Moore JH, White BC. Tuning ReliefF for genome-wide genetic analysis. Lect. Notes Comput. Sc.
2007a; 4447:166–175.

Moore, JH.; White, BC. Genome-wide genetic analysis using genetic programming. The critical need
for expert knowledge. In: Riolo, R.; Soule, T.; Worzel, B., editors. Genetic Programming Theory
and Practice IV. New York: Springer; 2007b. p. 11-28.

Moore JH, Asselbergs FW, Williams SM. Bioinformatics challenges for genome-wide association
studies. Bioinformatics. 2010; 26:445–455. [PubMed: 20053841]

Moore JH, Williams SM. New strategies for identifying gene-gene interactions in hypertension. Ann.
Med. 2002; 34:88–95. [PubMed: 12108579]

Moore JH, Williams SM. Traversing the conceptual divide between biological and statistical epistasis:
Systems biology and a more modern synthesis. Bioessays. 2005; 27:637–46. [PubMed: 15892116]

Moore JH, Lamb JM, Brown NJ, Vaughan DE. A comparison of combinatorial partitioning and linear
regression for the detection of epistatic effects of the ACE I/D and PAI-1 4G/5G polymorphisms
on plasma PAI-1 levels. Clin. Genet. 2002a; 62:74–79. [PubMed: 12123491]

Moore JH, Smolkin ME, Lamb JM, Brown NJ, Vaughan DE. The relationship between plasma t-PA
and PAI-1 levels is dependent on epistatic effects of the ACE I/D and PAI-1 4G/5G
polymorphisms. Clin. Genet. 2002b; 62:53–59. [PubMed: 12123488]

Moore JH, Gilbert JC, Tsai C-T, Chiang FT, Holden W, Barney N, White BC. A flexible
computational framework for detecting, characterizing, and interpreting statistical patterns of
epistasis in genetic studies of human disease susceptibility. J. Theoretical Biol. 2006; 241:252–
261.

Namkung J, Kim K, Yi S, Chung W, Kwon MS, Park T. New evaluation measures for multifactor
dimensionality reduction classifiers in gene–gene interaction analysis. Bioinformatics. 2009a;
25:338–345. [PubMed: 19164302]

Namkung J, Elston RC, Yang JM, Park T. Identification of gene–gene interactions in the presence of
missing data using the multifactor dimensionality reduction method. Genet. Epidemiol. 2009b;
33:646–656. [PubMed: 19241410]

Neel, JV.; Schull, WJ. Human Heredity. Chicago: University of Chicago Press; 1954.

Nelson MR, Kardia SL, Ferrell RE, Sing CF. A combinatorial partitioning method to identify
multilocus genotypic partitions that predict quantitative trait variation. Genome Res. 2001;
11:458–470. [PubMed: 11230170]

Gilbert-Diamond and Moore Page 14

Curr Protoc Hum Genet. Author manuscript; available in PMC 2014 July 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Neter, J.; Wasserman, W.; Kutner, MH. Applied Linear Statistical Models. Chicago: Irwin; 1990.

Park MY, Hastie T. Penalized logistic regression for detecting gene interactions. Biostatistics. 2008;
9:30–50. [PubMed: 17429103]

Pattin KA, Moore JH. Exploiting the proteome to improve the genome-wide genetic analysis of
epistasis in common human diseases. Hum. Genet. 2008; 124:19–29. [PubMed: 18551320]

Pattin KA, White BC, Barney N, Gui J, Nelson HH, Kelsey KT, Andrew AS, Karagas MR, Moore JH.
A computationally efficient hypothesis testing method for epistasis analysis using multifactor
dimensionality reduction. Genet. Epidemiol. 2009a; 33:87–94. [PubMed: 18671250]

Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of
events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996; 49:1373–1379.
[PubMed: 8970487]

Phillips PC. The language of gene interaction. Genetics. 1998; 149:1167–1171. [PubMed: 9649511]

Phillips PC. Epistasis — the essential role of gene interactions in the structure and evolution of genetic
systems. Nature Reviews Genetics. 2008; 9:855–867.

Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH. Multifactor
dimensionality reduction reveals high-order interactions among estrogen metabolism genes in
sporadic breast cancer. Am. J. Hum. Genet. 2001; 69:138–147. [PubMed: 11404819]

Ritchie MD, Hahn LW, Moore JH. Power of multifactor dimensionality reduction for detecting gene-
gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic
heterogeneity. Genet. Epidemiol. 2003; 24:150–157. [PubMed: 12548676]

Shull GH. Duplicate genes for capsule form in Bursa bursa pastoris. J. Ind. Abst. Vererb. 1914;
12:97–149.

Sing CF, Stengård JH, Kardia SL. Genes, environment, and cardiovascular disease. Arterioscler.
Thromb. Vasc. Biol. 2003; 23:1190–1196. [PubMed: 12730090]

Stone M. Cross-validation: A review. Math. Operationsforsch. Statist. Ser. Statistics. 1978; 9:127–129.

Templeton, AR. Epistasis and complex traits. In: Wolf, J.; Brodie, B., III; Wade, M., editors. Epistasis
and the Evolutionary Process. New York: Oxford University Press; 2000.

Thornton-Wells TA, Moore JH, Haines JL. Genetics, statistics and human disease: Analytical retooling
for complexity. Trends Genet. 2004; 20:640–647. [PubMed: 15522460]

Velez DR, White BC, Motsinger AA, Bush WS, Ritchie MD, Williams SM, Moore JH. A balanced
accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality
reduction. Genet. Epidemiol. 2007; 31:306–315. [PubMed: 17323372]

Wade MJ, Winther RG, Agrawal AF, Goodnight CJ. Alternative definitions of epistasis: Dependence
and interaction. Trends Ecol. Evol. 2001; 16:498–504.

Wahlsten D. Insensitivity of the analysis of variance to heredity-environment interaction. Behav. Brain
Sci. 1990; 13:109–120.

Wang WY, Barratt BJ, Clayton DG, Todd TA. Genome-wide association studies: Theoretical and
practical concerns. Nature Rev. Genet. 2005; 6:109–118. [PubMed: 15716907]

Weiss, KM. Genetic Variation and Human Disease. Cambridge: Cambridge University Press; 1993.

Wilke RA, Reif DM, Moore JH. Combinatorial pharmacogenetics. Nat. Rev. Drug Discov. 2005;
4:911–918. [PubMed: 16264434]

Winham S, Wang C, Motsinger-Reif AA. A Comparison of Multifactor Dimensionality Reduction and
L1-Penalized Regression to Idenity Gene-Gene Interactions in Genetic Association Studies.
Statistical Applications in Genetics and Molecular Biology. 2011; 10 Iss 1, Art 4.

Zee RY, Hoh J, Cheng S, Reynolds R, Grow MA, Silbergleit A, Walker K, Steiner L, Zangenberg G,
Fernandez-Ortiz A, Macaya C, Pintor E, Fernandez-Cruz A, Ott J, Lindpainter K. Multilocus
interactions predict risk for post-PTCA restenosis: An approach to the genetic analysis of
common complex disease. Pharmacogenomics J. 2002; 2:197–201. [PubMed: 12082592]

Gilbert-Diamond and Moore Page 15

Curr Protoc Hum Genet. Author manuscript; available in PMC 2014 July 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.14.1.
(A) Distribution of cases (diseased subjects; left bars) and controls (healthy subjects; right

bars) across three genotypes (0, 1, 2) for two simulated interacting single nucleotide

polymorphisms (SNPs). Note that the ratio of cases to controls for these two SNPs is nearly

identical. The dark shaded cells signify “high-risk” genotypes (empirically determined). (B)

Distribution of cases and controls across nine two-locus genotype combinations. Note that

considering the two SNPs jointly reveals larger case-control ratios. Also illustrated is the use

of the attribute construction function (see Ritchie et al., 2001 for MDR method) that

produces a single attribute (SNP1_SNP2 with two levels, G0 and G1) from the two SNPs.
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Table 1.14.1

Penetrance Values for Combinations of Genotypes from Two SNPs Exhibiting Interactions in the Absence of

Independent Main Effects

Table penetrance Margin penetrance

Genotype frequencies AA (0.25) Aa (0.50) aa (0.25)

BB (0.25) 0 0.1 0 0.05

Bb (0.50) 0.1 0 0.1 0.05

bb (0.25) 0 0.1 0 0.05

Margin penetrance 0.05 0.05 0.05
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