Calculus Lecture 2

Oktay Olmez and Serhan Varma

Limit: Intuitive Meaning

Definition

Let f be a real valued function. To say that $\lim _{x \rightarrow c} f(x)=L$ means that when x is near but different from c then $f(x)$ is near L.

Limit: Intuitive Meaning

Definition

Let f be a real valued function. To say that $\lim _{x \rightarrow c} f(x)=L$ means that when x is near but different from c then $f(x)$ is near L.

Limit: Mathematical Definition

Definition

Let $f: D \rightarrow \mathbb{R}$ be a function defined on a subset $D \subseteq \mathbb{R}$, let c be a limit point of D, and let L be a real number. Then the function f has a limit L at c is defined to mean for all $\varepsilon>0$, there exists a $\delta>0$ such that for all x in D that satisfy $0<|x-c|<\delta$, the inequality $|f(x)-L|<\varepsilon$ holds.

Limit: Mathematical Definition

Definition

Let $f: D \rightarrow \mathbb{R}$ be a function defined on a subset $D \subseteq \mathbb{R}$, let c be a limit point of D, and let L be a real number. Then the function f has a limit L at c is defined to mean for all $\varepsilon>0$, there exists a $\delta>0$ such that for all x in D that satisfy $0<|x-c|<\delta$, the inequality $|f(x)-L|<\varepsilon$ holds.

Symbolically:
$\lim _{x \rightarrow c} f(x)=L \Longleftrightarrow(\forall \varepsilon>0)(\exists \delta>0)(\forall x \in D)(0<|x-c|<\delta \Rightarrow$ $x \rightarrow c$ $|f(x)-L|<\varepsilon)$.

Limit: Mathematical Definition

Limit: Mathematical Definition

Question

Prove the statement that

$$
\lim _{x \rightarrow 5}(3 x-3)=12
$$

Limit: Mathematical Definition

Question

Prove the statement that

$$
\lim _{x \rightarrow 5}(3 x-3)=12
$$

Solution

According to the formal definition, the statement is true if and only if confining x to δ units of 5 will inevitably confine $3 x-3$ to ε units of 12 . The overall key to showing this implication is to demonstrate how δ and ε must be related to each other such that the implication holds.
Mathematically, we want to show that

$$
0<|x-5|<\delta \Rightarrow|(3 x-3)-12|<\varepsilon
$$

Simplifying the equation yields $|x-5|<\varepsilon / 3$. Thus, δ and ε is related by $\delta \leq \varepsilon / 3$.

One-sided Limits

$\lim _{x \rightarrow c^{+}} f(x)$ means that x approaches c from right.

One-sided Limits

$\lim _{x \rightarrow c^{+}} f(x)$ means that x approaches c from right. $\lim _{x \rightarrow-} f(x)$ means that x approaches c from left. $x \rightarrow c^{-}$

One-sided Limits

$\lim _{x \rightarrow c^{+}} f(x)$ means that x approaches c from right. $\lim _{x \rightarrow c^{-}} f(x)$ means that x approaches c from left. $x \rightarrow c^{-}$

Definition

Let f be a real valued function. To say that $\lim _{x \rightarrow c^{+}} f(x)=L$ means that when x is near but to the right of c then $f(x)$ is near L.

One-sided Limits

$\lim _{x \rightarrow c^{+}} f(x)$ means that x approaches c from right. $x \rightarrow c^{+}$
$\lim _{x \rightarrow c^{-}} f(x)$ means that x approaches c from left. $x \rightarrow c^{-}$

Definition

Let f be a real valued function. To say that $\lim _{x \rightarrow c^{+}} f(x)=L$ means that when x is near but to the right of c then $f(x)$ is near L.

Definition

Let f be a real valued function. To say that $\lim _{x \rightarrow c^{-}} f(x)=L$ means that when x is near but to the left of c then $f(x)$ is near L.

One-sided Limits

$\lim _{x \rightarrow c^{+}} f(x)$ means that x approaches c from right. $x \rightarrow c^{+}$
$\lim _{x \rightarrow c^{-}} f(x)$ means that x approaches c from left. $x \rightarrow c^{-}$

Definition

Let f be a real valued function. To say that $\lim _{x \rightarrow c^{+}} f(x)=L$ means that when x is near but to the right of c then $f(x)$ is near L.

Definition

Let f be a real valued function. To say that $\lim _{x \rightarrow c^{-}} f(x)=L$ means that when x is near but to the left of c then $f(x)$ is near L.

Theorem

$\lim _{x \rightarrow c^{-}} f(x)=L=\lim _{x \rightarrow c^{+}} f(x)$ if and only if $\lim _{x \rightarrow c} f(x)=L$

Heaviside Function: The Heaviside function is often used to specify when something is on or off

The Heaviside function is defined as

$$
H(x)= \begin{cases}1 & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Heaviside Function: The Heaviside function is often used to specify when something is on or off

The Heaviside function is defined as

$$
H(x)= \begin{cases}1 & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Heaviside Function

- This function clearly has the limit of 0 for any $x<0$, and it has the limit of 1 for any $x>0$.

Heaviside Function

- This function clearly has the limit of 0 for any $x<0$, and it has the limit of 1 for any $x>0$.
- Even though this function is defined to be 1 at $x=0$, it does not have a limit at $x=0$

An Application: Free-Fall

Example

Use the position function $s(t)=-16 t^{2}+500$ which gives the height (in feet) of an object that has fallen for seconds from a height of 500 feet. The velocity at time $t=$ a seconds is given by

$$
\lim _{t \rightarrow a} \frac{s(a)-s(t)}{a-t}
$$

(a) If a construction worker drops a wrench from a height of 500 feet, how fast will the wrench be falling after 2 seconds?
(b) If a construction worker drops a wrench from a height of 500 feet, when will the wrench hit the ground? At what velocity will the wrench impact the ground?

Solution

(a) $\lim _{t \rightarrow 2} \frac{s(2)-s(t)}{2-t}=-64$
(b) $\lim _{t \rightarrow \frac{5 \sqrt{5}}{2}} \frac{s\left(\frac{5 \sqrt{5}}{2}\right)-s(t)}{\frac{5 \sqrt{5}}{2}-t}=-80 \sqrt{5}$

