$$\bullet \lim_{x \to c} k = k$$

- $\bullet \lim_{x \to c} k = k$
- $\bullet \lim_{x \to c} x = c$

- $\bullet \lim_{x \to c} k = k$
- $\bullet \lim_{x \to c} x = c$
- $\bullet \lim_{x \to c} kf(x) = k \lim_{x \to c} f(x)$

- $\bullet \lim_{x \to c} k = k$
- $\bullet \lim_{x \to c} x = c$
- $\bullet \lim_{x \to c} kf(x) = k \lim_{x \to c} f(x)$
- $\bullet \lim_{x \to c} f(x) \pm g(x) = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$

- $\bullet \lim_{x \to c} k = k$
- $\bullet \lim_{x \to c} x = c$
- $\bullet \lim_{x \to c} kf(x) = k \lim_{x \to c} f(x)$
- $\bullet \lim_{x \to c} f(x) \pm g(x) = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$
- $\lim_{x \to c} f(x) \cdot g(x) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$

- $\bullet \lim_{x \to c} k = k$
- $\bullet \lim_{x \to c} x = c$
- $\bullet \lim_{x \to c} kf(x) = k \lim_{x \to c} f(x)$
- $\bullet \lim_{x \to c} f(x) \pm g(x) = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$
- $\lim_{x \to c} f(x) \cdot g(x) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$
- $\bullet \lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$

- $\bullet \lim_{x \to c} k = k$
- $\bullet \lim_{x \to c} x = c$
- $\bullet \lim_{x \to c} kf(x) = k \lim_{x \to c} f(x)$
- $\bullet \lim_{x \to c} f(x) \pm g(x) = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$
- $\lim_{x \to c} f(x) \cdot g(x) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$
- $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$
- $\bullet \lim_{x \to c} (f(x))^n = (\lim_{x \to c} f(x))^n$

- $\bullet \lim_{x \to c} k = k$
- $\bullet \lim_{x \to c} x = c$
- $\bullet \lim_{x \to c} kf(x) = k \lim_{x \to c} f(x)$
- $\bullet \lim_{x \to c} f(x) \pm g(x) = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$
- $\lim_{x \to c} f(x) \cdot g(x) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$
- $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$
- $\bullet \lim_{x \to c} (f(x))^n = (\lim_{x \to c} f(x))^n$
- $\lim_{x \to c} \sqrt{f(x)} = \sqrt{\lim_{x \to c} f(x)}$

Useful Limit Theorems

Theorem

Let f be a polynomial or a rational function. Then,

$$\lim_{x\to c}f(x)=f(c)$$

provided that f(c) is defined.

Useful Limit Theorems

Theorem

Let f be a polynomial or a rational function. Then,

$$\lim_{x\to c} f(x) = f(c)$$

provided that f(c) is defined.

Theorem

If f(x) = g(x) for all x in an open interval containing c, except possibly at c. If $\lim_{x \to c} f(x)$ and $\lim_{x \to c} g(x)$ exist then $\lim_{x \to c} f(x) = \lim_{x \to c} g(x)$.

Useful Limit Theorems

Theorem

Let f be a polynomial or a rational function. Then,

$$\lim_{x\to c} f(x) = f(c)$$

provided that f(c) is defined.

Theorem

If f(x) = g(x) for all x in an open interval containing c, except possibly at c. If $\lim_{x \to c} f(x)$ and $\lim_{x \to c} g(x)$ exist then $\lim_{x \to c} f(x) = \lim_{x \to c} g(x)$.

Theorem

Let f, g and h be functions satisfying for $f(x) \le g(x) \le h(x)$ all x in an open interval containing c, except possibly at c. If $\lim_{x \to c} f(x) = L = \lim_{x \to c} h(x)$ then $\lim_{x \to c} g(x) = L$.

Limit Theorems for Trigonometric Functions

Theorem

Let c be a real number. Then,

- $\bullet \lim_{x \to c} \cos(x) = \cos(c)$
- $\bullet \lim_{x \to c} \sin(x) = \sin(c)$
- $\bullet \lim_{x \to c} \csc(x) = \csc(c)$
- $\bullet \lim_{x \to c} \sec(x) = \sec(c)$
- $\bullet \lim_{x \to c} \cot(x) = \cot(c)$
- $\bullet \lim_{x \to c} \tan(x) = \tan(c)$

Theorem

$$\lim_{x\to 0}\frac{\sin(x)}{x}=1 \ \text{and} \ \lim_{x\to 0}\frac{1-\cos(x)}{x}=0.$$

Theorem

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \text{ and } \lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0.$$

Proof.

Theorem

$$\lim_{x\to 0} \frac{\sin(x)}{x} = 1 \text{ and } \lim_{x\to 0} \frac{1-\cos(x)}{x} = 0$$

Proof.

Multiplying each expression by $2/\sin\theta$ produces

$$\frac{1}{\cos\theta} \ge \frac{\theta}{\sin\theta} \ge 1$$

and taking reciprocals and reversing the inequalities yields

$$\cos \theta \le \frac{\sin \theta}{\theta} \le 1.$$

Because $\cos\theta = \cos(-\theta)$ and $(\sin\theta)/\theta = [\sin(-\theta)]/(-\theta)$, you can conclude that this inequality is valid for *all* nonzero θ in the open interval $(-\pi/2, \pi/2)$. Finally, because $\lim_{\theta \to 0} \cos\theta = 1$ and $\lim_{\theta \to 0} 1 = 1$, you can apply the Squeeze Theorem to conclude that $\lim_{\theta \to 0} (\sin\theta)/\theta = 1$.

What parking space number is the car parked?

