Limits at ∞

$x \rightarrow \infty$ means that x gets larger and larger without a bound.

Limits at ∞

$x \rightarrow \infty$ means that x gets larger and larger without a bound. $x \rightarrow-\infty$ means that x gets smaller and smaller without a bound.

Limits at ∞

$x \rightarrow \infty$ means that x gets larger and larger without a bound. $x \rightarrow-\infty$ means that x gets smaller and smaller without a bound.

Limits at ∞

$x \rightarrow \infty$ means that x gets larger and larger without a bound. $x \rightarrow-\infty$ means that x gets smaller and smaller without a bound.

$\lim _{x \rightarrow \infty} \frac{1}{x}=0=\lim _{x \rightarrow-\infty} \frac{1}{x}$. Note that for a positive number k,

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{k}}=0=\lim _{x \rightarrow-\infty} \frac{1}{x^{k}} .
$$

Mathematical Definition

For $f(x)$ a real function, the limit of f as x approaches infinity is L, denoted

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

means that for all $\varepsilon>0$, there exists c such that $|f(x)-L|<\varepsilon$ whenever $x>c$. Similarly, the limit of f as x approaches negative infinity is L, denoted

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

means that for all $\varepsilon>0$ there exists c such that $|f(x)-L|<\varepsilon$ whenever $x<c$. For example

$$
\lim _{x \rightarrow-\infty} e^{x}=0
$$

An application: Finding the Area of a Circle

An application: Finding the Area of a Circle

An application: Finding the Area of a Circle

Let $f(n)$ be the area of the n-gon inscribed in a circle of radius r.

An application: Finding the Area of a Circle

Let $f(n)$ be the area of the n-gon inscribed in a circle of radius r. Then, Area of a circle with radius r is $\lim _{n \rightarrow \infty} f(n)=\pi r^{2}$

Math Dance Moves

Math Dance Moves

Infinite Limits

Infinite Limits

Infinite Limits

$\lim f(x)=\infty$ means that $f(x)$ can be made as large as we wish by taking x sufficiently close but to the right of c.

Infinite Limits

$\lim _{x \rightarrow c^{+}} f(x)=\infty$ means that $f(x)$ can be made as large as we wish by taking x sufficiently close but to the right of c. $\lim ^{+} f(x)=-\infty$ means that $f(x)$ can be made as small as we wish by taking x sufficiently close but to the right of c.

Infinite Limits

$\lim _{x \rightarrow c^{+}} f(x)=\infty$ means that $f(x)$ can be made as large as we wish by taking x sufficiently close but to the right of c.
$\lim _{x)^{+}} f(x)=-\infty$ means that $f(x)$ can be made as small as we wish by $x \rightarrow c^{+}$ taking x sufficiently close but to the right of c. $\lim _{x \rightarrow 0^{-}} f(x)=\infty$ means that $f(x)$ can be made as large as we wish by $x \rightarrow c^{-}$ taking x sufficiently close but to the left of c.

Infinite Limits

$\lim _{x \rightarrow c^{+}} f(x)=\infty$ means that $f(x)$ can be made as large as we wish by taking x sufficiently close but to the right of c.
$\lim _{x \rightarrow c^{+}} f(x)=-\infty$ means that $f(x)$ can be made as small as we wish by taking x sufficiently close but to the right of c.
$\lim _{x \rightarrow]^{-}} f(x)=\infty$ means that $f(x)$ can be made as large as we wish by $x \rightarrow c^{-}$ taking x sufficiently close but to the left of c.
$\lim _{x \rightarrow c^{-}} f(x)=-\infty$ means that $f(x)$ can be made as small as we wish by taking x sufficiently close but to the left of c.

Vertical and Horizontal Asymptotes

Definition

Line $x=c$ is a vertical asymptote of the graph of $y=f(x)$. If any of the following is satisfied:

- $\lim _{x \rightarrow c^{+}} f(x)=\infty$
- $\lim _{x \rightarrow c^{+}} f(x)=-\infty$
- $\lim _{x \rightarrow c^{-}} f(x)=\infty$
- $\lim _{x \rightarrow c^{-}} f(x)=-\infty$

Vertical and Horizontal Asymptotes

Definition

Line $x=c$ is a vertical asymptote of the graph of $y=f(x)$. If any of the following is satisfied:

- $\lim _{x \rightarrow c^{+}} f(x)=\infty$
- $\lim _{x \rightarrow c^{+}} f(x)=-\infty$
- $\lim _{x \rightarrow c^{-}} f(x)=\infty$
- $\lim _{x \rightarrow c^{-}} f(x)=-\infty$

Definition

Line $y=b$ is a horizontal asymptote of the graph of $y=f(x)$. If any of the following is satisfied:

- $\lim _{x \rightarrow \infty} f(x)=b$
- $\lim _{x \rightarrow-\infty} f(x)=b$

