Calculus Lecture 3

Oktay Olmez and Serhan Varma

Continuity at a point

Definition

Let f be defined on an open interval containing c. We say that f is continuous at c if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

Continuity at a point

Definition

Let f be defined on an open interval containing c. We say that f is continuous at c if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

In other words,

- f has to be defined at c.
- $\lim _{x \rightarrow c^{-}} f(x)$ and $\lim _{x \rightarrow c^{+}} f(x)$ exist and equal.
- The value of the limit must equal $f(c)$.

Examples of Continuous Functions

Example

A polynomial function is continuous at every real number.

Examples of Continuous Functions

Example

A polynomial function is continuous at every real number.
A rational function is continuous everywhere except where its denominator is zero.

Examples of a discontinuous Functions

Example

A bookbinding company produces 10,000 books in an eight-hour shift. The fixed cost per shift amounts to $\$ 5000$, and the unit cost per book is $\$ 3$. Using the greatest integer function, you can write the cost of producing x books as

$$
C(x)=5000\left(1+\left\lfloor\frac{x-1}{10000}\right\rfloor\right)+3 x
$$

Solution

Mathematical Definition

Definition

Continuity of $f: I \longrightarrow \mathbb{R}$ at $c \in I$ means that for every $\varepsilon>0$ there exists a $\delta>0$ such that for all $x \in I$:

$$
|x-c|<\delta \Rightarrow|f(x)-f(c)|<\varepsilon
$$

Mathematical Definition

Definition

Continuity of $f: I \longrightarrow \mathbb{R}$ at $c \in I$ means that for every $\varepsilon>0$ there exists a $\delta>0$ such that for all $x \in I$:

$$
|x-c|<\delta \Rightarrow|f(x)-f(c)|<\varepsilon
$$

Example

Example

Prove that $f(x)=2 x$ at $x=1$ is continuous.

Solution

For all $\varepsilon>0$, we want to find at least one associated δ.

$$
\begin{aligned}
|x-1|<\delta \Longrightarrow|f(x)-f(1)| & =|2 x-2| \\
& =2|x-1|<2 \delta \leq \varepsilon \\
& \Longrightarrow \delta \leq \frac{\varepsilon}{2}
\end{aligned}
$$

Continuity theorem for operations

Theorem

Let f and g be continuous at c, then so are $k f, f \pm g, f \cdot g, f / g$ (provided that $g(c) \neq 0), f^{n}$ and \sqrt{f} (provided that $f(c)>0$).

Continuity theorem for operations

Theorem

Let f and g be continuous at c, then so are $k f, f \pm g, f \cdot g, f / g$ (provided that $g(c) \neq 0), f^{n}$ and \sqrt{f} (provided that $f(c)>0$).

Example

At what numbers is $f(x)=\frac{|x|-x^{2}}{\sqrt{x}+\sqrt[3]{x}}$ continuous?

Continuity of Trigonometric Functions

- $\sin (x)$ and $\cos (x)$ are continuous at every real number.

Continuity of Trigonometric Functions

- $\sin (x)$ and $\cos (x)$ are continuous at every real number.
- $\tan (x), \cot (x), \csc (x)$ and $\sec (x)$ are continuous at every real number c in their domains.

Composite Limit Theorem

Theorem

Let $\lim _{x \rightarrow c} g(x)=L$ and f be a continuous function at L. Then,

$$
\lim _{x \rightarrow c} f(g(x))=f\left(\lim _{x \rightarrow c} g(x)\right)=f(L) .
$$

Composite Limit Theorem

Theorem

Let $\lim _{x \rightarrow c} g(x)=L$ and f be a continuous function at L. Then,

$$
\lim _{x \rightarrow c} f(g(x))=f\left(\lim _{x \rightarrow c} g(x)\right)=f(L) .
$$

Example

At what numbers is $f(x)=\sin \left(\frac{x^{4}-3 x+1}{x^{2}-x-6}\right)$ discontinuous?

