Calculus Lecture 3

Oktay Olmez and Serhan Varma

Intermediate Value Theorem

We say f is continuous on the interval $[a, b]$ if

- f is continuous at every point that belongs to the interval (a, b).
- $\lim _{x \rightarrow a^{+}} f(x)=f(a)$
- $\lim _{x \rightarrow b^{-}} f(x)=f(b)$

Intermediate Value Theorem

We say f is continuous on the interval $[a, b]$ if

- f is continuous at every point that belongs to the interval (a, b).
- $\lim _{x \rightarrow a^{+}} f(x)=f(a)$
- $\lim _{x \rightarrow b^{-}} f(x)=f(b)$

Theorem (IVT)

Let f be a continuous function on $[a, b]$ and W be a number between $f(a)$ and $f(b)$. Then, there is at least one c between a and b such that $f(c)=W$.

IVT Example

Example

Is there any real number c between 0 and $\pi / 2$ such that $c=\cos (c)$?

IVT Example

Example

Is there any real number c between 0 and $\pi / 2$ such that $c=\cos (c)$?

Example

Show that $p(x)=2 x^{3}-5 x^{2}-10 x+5$ has a root somewhere between -1 and 2.

Types of discontunity

- In a removable discontinuity $\lim _{x \rightarrow c} f(x)$ exists, but $\lim _{x \rightarrow c} f(x) \neq f(c)$.
- In a jump discontinuity, the right-hand and left-hand limits both exist, but are not equal.
- An infinite discontinuity exists when one of the one-sided limits of the function is infinite.
- An oscillating discontinuity exists when the values of the function appear to be approaching two or more values simultaneously.

