Calculus Lecture 4

Oktay Olmez and Serhan Varma

Meaning

Meaning

- imitative of the work of another artist, writer, etc., and usually disapproved of for that reason.
- (of a product) having a value deriving from an underlying variable asset.
- something which is based on another source.

why derivative?

Slope of tangent line

Consider the graph of $y=f(x)$.

Slope of tangent line

Consider the graph of $y=f(x)$.

- $m_{\text {sec }}=\frac{f(x+h)-f(x)}{h}$.
- $m_{\text {tan }}=\lim _{h \rightarrow 0} m_{\text {sec }}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ (provided that this limit exists and not equals to either ∞ or $-\infty$).

Slope of tangent line

Consider the graph of $y=f(x)$.

- $m_{\text {sec }}=\frac{f(x+h)-f(x)}{h}$.
- $m_{\text {tan }}=\lim _{h \rightarrow 0} m_{\text {sec }}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ (provided that this limit exists and not equals to either ∞ or $-\infty)$.
Suppose $f(x)$ is the position function of a moving object.
- $v_{\text {avg }}=\frac{f(x+h)-f(x)}{h}$.
- $v=\lim _{h \rightarrow 0} v_{\text {avg }}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .(v$ is the instantaneous velocity $)$

Secant to Tangent

Derivative

Definition

Derivative of a function f is another function f^{\prime} whose value at number x is given by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Example

Example

Apply the definition to find the derivative of the function $f(x)=x^{2}$.

Solution

$$
\begin{aligned}
f^{\prime}(x)= & \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h=2 x .
\end{aligned}
$$

Differentiability implies continuity

Theorem

If $f^{\prime}(c)$ exists then f is continuous at c.

Differentiability implies continuity

Theorem
 If $f^{\prime}(c)$ exists then f is continuous at c.

But the converse may not be true!

Differentiability implies continuity

Theorem

If $f^{\prime}(c)$ exists then f is continuous at c.
But the converse may not be true!

$f(x)=|x|$ is not differentiable at $x=0$

By definition, we need to show the following limit exists at $x=0$.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}
$$

Thus we just need to consider,

$$
\lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h} .
$$

But, it is evident that this limit DNE.

Electric Charge

Example

The rate of change of electric charge with respect to time is called current. Suppose that $\frac{t^{3}}{3}+t$ coulombs of charge flow through a wire in t seconds. Find the current in amperes after 3 seconds. When will a 26-amperes fuse in the line?

Δx and Δy

Let $y=f(x)$. Then,

Δx and Δy

Let $y=f(x)$. Then,

- Δx means change in x.

Δx and Δy

Let $y=f(x)$. Then,

- Δx means change in x.
- If $x_{1}=2$ and $x_{2}=4$, Then $\Delta x=4-2=2$.

Δx and Δy

Let $y=f(x)$. Then,

- Δx means change in x.
- If $x_{1}=2$ and $x_{2}=4$, Then $\Delta x=4-2=2$.
- Δy means change in y.

Δx and Δy

Let $y=f(x)$. Then,

- Δx means change in x.
- If $x_{1}=2$ and $x_{2}=4$, Then $\Delta x=4-2=2$.
- Δy means change in y.
- If $x_{1}=2$ and $x_{2}=4$, Then $\Delta y=f(4)-f(2)$.

Δx and Δy

Let $y=f(x)$. Then,

- Δx means change in x.
- If $x_{1}=2$ and $x_{2}=4$, Then $\Delta x=4-2=2$.
- Δy means change in y.
- If $x_{1}=2$ and $x_{2}=4$, Then $\Delta y=f(4)-f(2)$.
- $m_{\text {sec }}=\frac{\Delta y}{\Delta x}$.
- $m_{t a n}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\frac{d y}{d x}$

Change yourself!

Change yourself!

CHANGE YOURSELF...

d ${ }^{8}$
$->0$
FOR THE BETTER!

Equation of a Tangent Line

Equation of a Tangent Line

Example

Find the equation of the tangent line to the graph of $y=\frac{1}{x}$ at $x=1$.

