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Rules for Derivative

We will use notations f ′, Dx f (x) and
dy

dx
for the derivative of the function

f given by the graph y = f (x).

For a constant k, we have Dx(k) = 0.

Dx(x) = 1.

For an integer n, we have Dx(x
n) = nxn−1.

For a constant k, we have Dx(kf (x)) = kDx f (x).

Dx(f (x)± g(x)) = Dx f (x)± Dxg(x).

Dx(f (x) · g(x)) = (Dx f (x))g(x) + f (x)(Dxg(x)).

Dx(
f (x)

g(x)
) =

g(x)(Dx f (x))− f (x)(Dxg(x))

g(x)2
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Derivative of trigonometric functions

Dx sin(x) = cos(x).

Dx cos(x) = − sin(x).

Dx tan(x) = sec2(x).

Dx cot(x) = − csc2(x)

Dx sec(x) = sec(x) tan(x).

Dx csc(x) = − csc(x) cot(x).
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Chain Rule

Let y = f (u) and u = g(x).

Dx f (g(x)) = f ′(g(x))g ′(x)

or
(f ◦ g)′(x) = f ′(g(x))g ′(x)

or
dy

dx
=

dy

du

du

dx
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Higher order derivatives
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Example

Example

An object moves along a horizontal coordinate line in a such a way that its
position at time t is specified by

s(t) = t3 − 12t2 + 36t − 30.

When is the velocity is 0?

When is the velocity is positive?

When is the object moving left?

When is the acceleration is positive?
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Example

Example

An object thrown directly upward is at the height of
s(t) = −16t2 + 48t + 256 feet after t seconds.

When is its initial velocity?

When does it reach its maximum height ?

With what speed does it hit the ground?
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