## Calculus Lecture 4

Oktay Olmez and Serhan Varma

## Rules for Derivative

We will use notations $f^{\prime}, D_{x} f(x)$ and $\frac{d y}{d x}$ for the derivative of the function $f$ given by the graph $y=f(x)$.

- For a constant $k$, we have $D_{x}(k)=0$.


## Rules for Derivative

We will use notations $f^{\prime}, D_{x} f(x)$ and $\frac{d y}{d x}$ for the derivative of the function $f$ given by the graph $y=f(x)$.

- For a constant $k$, we have $D_{x}(k)=0$.
- $D_{x}(x)=1$.


## Rules for Derivative

We will use notations $f^{\prime}, D_{x} f(x)$ and $\frac{d y}{d x}$ for the derivative of the function $f$ given by the graph $y=f(x)$.

- For a constant $k$, we have $D_{x}(k)=0$.
- $D_{x}(x)=1$.
- For an integer $n$, we have $D_{x}\left(x^{n}\right)=n x^{n-1}$.


## Rules for Derivative

We will use notations $f^{\prime}, D_{x} f(x)$ and $\frac{d y}{d x}$ for the derivative of the function $f$ given by the graph $y=f(x)$.

- For a constant $k$, we have $D_{x}(k)=0$.
- $D_{x}(x)=1$.
- For an integer $n$, we have $D_{x}\left(x^{n}\right)=n x^{n-1}$.
- For a constant $k$, we have $D_{x}(k f(x))=k D_{x} f(x)$.


## Rules for Derivative

We will use notations $f^{\prime}, D_{x} f(x)$ and $\frac{d y}{d x}$ for the derivative of the function $f$ given by the graph $y=f(x)$.

- For a constant $k$, we have $D_{x}(k)=0$.
- $D_{x}(x)=1$.
- For an integer $n$, we have $D_{x}\left(x^{n}\right)=n x^{n-1}$.
- For a constant $k$, we have $D_{x}(k f(x))=k D_{x} f(x)$.
- $D_{x}(f(x) \pm g(x))=D_{x} f(x) \pm D_{x} g(x)$.


## Rules for Derivative

We will use notations $f^{\prime}, D_{x} f(x)$ and $\frac{d y}{d x}$ for the derivative of the function $f$ given by the graph $y=f(x)$.

- For a constant $k$, we have $D_{x}(k)=0$.
- $D_{x}(x)=1$.
- For an integer $n$, we have $D_{x}\left(x^{n}\right)=n x^{n-1}$.
- For a constant $k$, we have $D_{x}(k f(x))=k D_{x} f(x)$.
- $D_{x}(f(x) \pm g(x))=D_{x} f(x) \pm D_{x} g(x)$.
- $D_{x}(f(x) \cdot g(x))=\left(D_{x} f(x)\right) g(x)+f(x)\left(D_{x} g(x)\right)$.


## Rules for Derivative

We will use notations $f^{\prime}, D_{x} f(x)$ and $\frac{d y}{d x}$ for the derivative of the function $f$ given by the graph $y=f(x)$.

- For a constant $k$, we have $D_{x}(k)=0$.
- $D_{x}(x)=1$.
- For an integer $n$, we have $D_{x}\left(x^{n}\right)=n x^{n-1}$.
- For a constant $k$, we have $D_{x}(k f(x))=k D_{x} f(x)$.
- $D_{x}(f(x) \pm g(x))=D_{x} f(x) \pm D_{x} g(x)$.
- $D_{x}(f(x) \cdot g(x))=\left(D_{x} f(x)\right) g(x)+f(x)\left(D_{x} g(x)\right)$.
- $D_{x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x)\left(D_{x} f(x)\right)-f(x)\left(D_{x} g(x)\right)}{g(x)^{2}}$


## Rules for Derivative

We will use notations $f^{\prime}, D_{x} f(x)$ and $\frac{d y}{d x}$ for the derivative of the function $f$ given by the graph $y=f(x)$.

- For a constant $k$, we have $D_{x}(k)=0$.
- $D_{x}(x)=1$.
- For an integer $n$, we have $D_{x}\left(x^{n}\right)=n x^{n-1}$.
- For a constant $k$, we have $D_{x}(k f(x))=k D_{x} f(x)$.
- $D_{x}(f(x) \pm g(x))=D_{x} f(x) \pm D_{x} g(x)$.
- $D_{x}(f(x) \cdot g(x))=\left(D_{x} f(x)\right) g(x)+f(x)\left(D_{x} g(x)\right)$.
- $D_{x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x)\left(D_{x} f(x)\right)-f(x)\left(D_{x} g(x)\right)}{g(x)^{2}}$


## Derivative of trigonometric functions

- $D_{x} \sin (x)=\cos (x)$.


## Derivative of trigonometric functions

- $D_{x} \sin (x)=\cos (x)$.
- $D_{x} \cos (x)=-\sin (x)$.


## Derivative of trigonometric functions

- $D_{x} \sin (x)=\cos (x)$.
- $D_{x} \cos (x)=-\sin (x)$.
- $D_{x} \tan (x)=\sec ^{2}(x)$.


## Derivative of trigonometric functions

- $D_{x} \sin (x)=\cos (x)$.
- $D_{x} \cos (x)=-\sin (x)$.
- $D_{x} \tan (x)=\sec ^{2}(x)$.
- $D_{x} \cot (x)=-\csc ^{2}(x)$


## Derivative of trigonometric functions

- $D_{x} \sin (x)=\cos (x)$.
- $D_{x} \cos (x)=-\sin (x)$.
- $D_{x} \tan (x)=\sec ^{2}(x)$.
- $D_{x} \cot (x)=-\csc ^{2}(x)$
- $D_{x} \sec (x)=\sec (x) \tan (x)$.


## Derivative of trigonometric functions

- $D_{x} \sin (x)=\cos (x)$.
- $D_{x} \cos (x)=-\sin (x)$.
- $D_{x} \tan (x)=\sec ^{2}(x)$.
- $D_{x} \cot (x)=-\csc ^{2}(x)$
- $D_{x} \sec (x)=\sec (x) \tan (x)$.
- $D_{x} \csc (x)=-\csc (x) \cot (x)$.


## Chain Rule

Let $y=f(u)$ and $u=g(x)$.

## Chain Rule

Let $y=f(u)$ and $u=g(x)$.

$$
D_{x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

## Chain Rule

Let $y=f(u)$ and $u=g(x)$.

$$
D_{x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

or

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

## Chain Rule

Let $y=f(u)$ and $u=g(x)$.

$$
D_{x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

or

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

or

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

## Higher order derivatives



## Example

## Example

An object moves along a horizontal coordinate line in a such a way that its position at time $t$ is specified by

$$
s(t)=t^{3}-12 t^{2}+36 t-30
$$

- When is the velocity is 0 ?
- When is the velocity is positive?
- When is the object moving left?
- When is the acceleration is positive?


## Example

## Example

An object thrown directly upward is at the height of $s(t)=-16 t^{2}+48 t+256$ feet after $t$ seconds.

- When is its initial velocity?
- When does it reach its maximum height ?
- With what speed does it hit the ground?

