Calculus	
Lecture 4	

Oktay Olmez and Serhan Varma

2

メロト メポト メヨト メヨト

We will use notations f', $D_x f(x)$ and $\frac{dy}{dx}$ for the derivative of the function f given by the graph y = f(x).

• For a constant k, we have $D_x(k) = 0$.

æ

We will use notations f', $D_x f(x)$ and $\frac{dy}{dx}$ for the derivative of the function f given by the graph y = f(x).

- For a constant k, we have $D_x(k) = 0$.
- $D_x(x) = 1$.

→ 注)→ → 注)→ 三 注

We will use notations f', $D_x f(x)$ and $\frac{dy}{dx}$ for the derivative of the function f given by the graph y = f(x).

• For a constant k, we have $D_x(k) = 0$.

•
$$D_x(x) = 1$$

• For an integer *n*, we have $D_x(x^n) = nx^{n-1}$.

We will use notations f', $D_x f(x)$ and $\frac{dy}{dx}$ for the derivative of the function f given by the graph y = f(x).

• For a constant k, we have $D_x(k) = 0$.

•
$$D_x(x) = 1$$

- For an integer *n*, we have $D_x(x^n) = nx^{n-1}$.
- For a constant k, we have $D_x(kf(x)) = kD_xf(x)$.

We will use notations f', $D_x f(x)$ and $\frac{dy}{dx}$ for the derivative of the function f given by the graph y = f(x).

• For a constant k, we have $D_x(k) = 0$.

•
$$D_x(x) = 1$$

- For an integer *n*, we have $D_x(x^n) = nx^{n-1}$.
- For a constant k, we have $D_x(kf(x)) = kD_xf(x)$.
- $D_x(f(x) \pm g(x)) = D_x f(x) \pm D_x g(x).$

We will use notations f', $D_x f(x)$ and $\frac{dy}{dx}$ for the derivative of the function f given by the graph y = f(x).

• For a constant k, we have $D_x(k) = 0$.

•
$$D_x(x) = 1$$
.

- For an integer *n*, we have $D_x(x^n) = nx^{n-1}$.
- For a constant k, we have $D_x(kf(x)) = kD_xf(x)$.

•
$$D_x(f(x) \pm g(x)) = D_x f(x) \pm D_x g(x).$$

• $D_x(f(x) \cdot g(x)) = (D_x f(x))g(x) + f(x)(D_x g(x)).$

We will use notations f', $D_x f(x)$ and $\frac{dy}{dx}$ for the derivative of the function f given by the graph y = f(x).

• For a constant k, we have $D_x(k) = 0$.

•
$$D_x(x) = 1$$
.

- For an integer *n*, we have $D_x(x^n) = nx^{n-1}$.
- For a constant k, we have $D_x(kf(x)) = kD_xf(x)$.

•
$$D_x(f(x) \pm g(x)) = D_x f(x) \pm D_x g(x).$$

•
$$D_x(f(x) \cdot g(x)) = (D_x f(x))g(x) + f(x)(D_x g(x)).$$

• $D_x(\frac{f(x)}{g(x)}) = \frac{g(x)(D_x f(x)) - f(x)(D_x g(x))}{g(x)^2}$

We will use notations f', $D_x f(x)$ and $\frac{dy}{dx}$ for the derivative of the function f given by the graph y = f(x).

• For a constant k, we have $D_x(k) = 0$.

•
$$D_x(x) = 1$$
.

- For an integer *n*, we have $D_x(x^n) = nx^{n-1}$.
- For a constant k, we have $D_x(kf(x)) = kD_xf(x)$.

•
$$D_x(f(x) \pm g(x)) = D_x f(x) \pm D_x g(x).$$

•
$$D_x(f(x) \cdot g(x)) = (D_x f(x))g(x) + f(x)(D_x g(x)).$$

• $D_x(\frac{f(x)}{g(x)}) = \frac{g(x)(D_x f(x)) - f(x)(D_x g(x))}{g(x)^2}$

•
$$D_x \sin(x) = \cos(x)$$
.

æ

'문▶' ★ 문▶

- $D_x \sin(x) = \cos(x)$.
- $D_x \cos(x) = -\sin(x)$.

æ

- 4 注 🕨 - 4 注 🕨 -

- $D_x \sin(x) = \cos(x)$.
- $D_x \cos(x) = -\sin(x)$.
- $D_x \tan(x) = \sec^2(x)$.

- $D_x \sin(x) = \cos(x)$.
- $D_x \cos(x) = -\sin(x)$.
- $D_x \tan(x) = \sec^2(x)$.
- $D_x \cot(x) = -\csc^2(x)$

注入 くほん

- $D_x \sin(x) = \cos(x)$.
- $D_x \cos(x) = -\sin(x)$.
- $D_x \tan(x) = \sec^2(x)$.
- $D_x \cot(x) = -\csc^2(x)$
- $D_x \sec(x) = \sec(x) \tan(x)$.

3 × 4 3 ×

- $D_x \sin(x) = \cos(x)$.
- $D_x \cos(x) = -\sin(x)$.
- $D_x \tan(x) = \sec^2(x)$.
- $D_x \cot(x) = -\csc^2(x)$
- $D_x \sec(x) = \sec(x) \tan(x)$.
- $D_x \operatorname{csc}(x) = -\operatorname{csc}(x) \operatorname{cot}(x)$.

3 K 4 3 K

Let
$$y = f(u)$$
 and $u = g(x)$.

æ

イロト イヨト イヨト イヨト

Let
$$y = f(u)$$
 and $u = g(x)$.
 $D_x f(g(x)) = f'(g(x))g'(x)$

æ

イロト イヨト イヨト イヨト

Let
$$y = f(u)$$
 and $u = g(x)$.
 $D_x f(g(x)) = f'(g(x))g'(x)$

or

$$(f \circ g)'(x) = f'(g(x))g'(x)$$

Oktay Olmez and Serhan Varma

æ

・ロト ・四ト ・ヨト ・ヨト

Let
$$y = f(u)$$
 and $u = g(x)$.
 $D_x f(g(x)) = f'(g(x))g'(x)$
or
 $(f \circ g)'(x) = f'(g(x))g'(x)$
or
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$

Oktay Olmez and Serhan Varma

4 / 7

æ

イロト イヨト イヨト イヨト

Higher order derivatives

Oktay Olmez and Serhan Varma

5 / 7

2

<ロ> (日) (日) (日) (日) (日)

Example

An object moves along a horizontal coordinate line in a such a way that its position at time t is specified by

$$s(t) = t^3 - 12t^2 + 36t - 30.$$

- When is the velocity is 0?
- When is the velocity is positive?
- When is the object moving left?
- When is the acceleration is positive?

Example

An object thrown directly upward is at the height of $s(t) = -16t^2 + 48t + 256$ feet after t seconds.

- When is its initial velocity?
- When does it reach its maximum height ?
- With what speed does it hit the ground?