Calculus Lecture 6

Oktay Olmez and Serhan Varma

Maxima and minima

Let S, the domain of f contain the point c.

- $f(c)$ is the maximum value of f on S if $f(c) \geq f(x)$ for all $x \in S$.

Maxima and minima

Let S, the domain of f contain the point c.

- $f(c)$ is the maximum value of f on S if $f(c) \geq f(x)$ for all $x \in S$.
- $f(c)$ is the minimum value of f on S if $f(c) \leq f(x)$ for all $x \in S$.

Maxima and minima

Let S, the domain of f contain the point c.

- $f(c)$ is the maximum value of f on S if $f(c) \geq f(x)$ for all $x \in S$.
- $f(c)$ is the minimum value of f on S if $f(c) \leq f(x)$ for all $x \in S$.
- $f(c)$ is an extreme value of f on S if it is either the maximum value or the minimum value.

Maxima and minima

Let S, the domain of f contain the point c.

- $f(c)$ is the maximum value of f on S if $f(c) \geq f(x)$ for all $x \in S$.
- $f(c)$ is the minimum value of f on S if $f(c) \leq f(x)$ for all $x \in S$.
- $f(c)$ is an extreme value of f on S if it is either the maximum value or the minimum value.
- the function we want to maximize or minimize is called objective function.

Does f have a maximum or a minimum value on S ?

If f is continuous on a closed interval $[a, b]$, then f attains both a maximum value and minimum value there.

Where do extreme values occur?

Let S, the domain of f, contains the point c.

- End points of the interval

Where do extreme values occur?

Let S, the domain of f, contains the point c.

- End points of the interval
- stationary points: If c is a point which $f^{\prime}(c)=0$, we call c a stationary point

Where do extreme values occur?

Let S, the domain of f, contains the point c.

- End points of the interval
- stationary points: If c is a point which $f^{\prime}(c)=0$, we call c a stationary point
- singular points: If $c \in[a, b]$ where f^{\prime} fails to exist, we call c a singular point

Where do extreme values occur?

Let S, the domain of f, contains the point c.

- End points of the interval
- stationary points: If c is a point which $f^{\prime}(c)=0$, we call c a stationary point
- singular points: If $c \in[a, b]$ where f^{\prime} fails to exist, we call c a singular point

Any point of one of these three types is called critical point of f.

What are the extreme values?

Let f be a continuous function defined on an interval $I=[a, b]$.

- Find the critical points of f on I

What are the extreme values?

Let f be a continuous function defined on an interval $I=[a, b]$.

- Find the critical points of f on I
- Evaluate f at each of these critical points. The largest of these values is the maximum value, the smallest is the minimum value.

Monotonicity and and Concavity

Let f be defined on an interval l.

- f is increasing on I if for every pair of numbers x_{1} and x_{2} in I, $x_{1}<x_{2}$ implies $f\left(x_{1}\right)<f\left(x_{2}\right)$.

Monotonicity and and Concavity

Let f be defined on an interval I.

- f is increasing on l if for every pair of numbers x_{1} and x_{2} in I, $x_{1}<x_{2}$ implies $f\left(x_{1}\right)<f\left(x_{2}\right)$.
- f is decreasing on I if for every pair of numbers x_{1} and x_{2} in I, $x_{1}<x_{2}$ implies $f\left(x_{1}\right)>f\left(x_{2}\right)$.

Monotonicity and and Concavity

Let f be defined on an interval l.

- f is increasing on l if for every pair of numbers x_{1} and x_{2} in I, $x_{1}<x_{2}$ implies $f\left(x_{1}\right)<f\left(x_{2}\right)$.
- f is decreasing on I if for every pair of numbers x_{1} and x_{2} in I, $x_{1}<x_{2}$ implies $f\left(x_{1}\right)>f\left(x_{2}\right)$.
- f is strictly monotone on $/$ if it is either increasing or decreasing on $/$

Monotonicity Theorem

Let f be a continuous function on an interval I and differentiable at every interior point of l.

Monotonicity Theorem

Let f be a continuous function on an interval / and differentiable at every interior point of I.

- If $f^{\prime}(x)>0$ for all x interior point of I then f is increasing on I.

Monotonicity Theorem

Let f be a continuous function on an interval / and differentiable at every interior point of I.

- If $f^{\prime}(x)>0$ for all x interior point of I then f is increasing on I.
- If $f^{\prime}(x)<0$ for all x interior point of I then f is decreasing on I.

Concave up and Concave down

Let f be differentiable on an open interval I. We say that f is concave up on I if f^{\prime} is increasing on I, and we say that f is concave down on I if f^{\prime} is decreasing on I.

Concave up and Concave down

Let f be differentiable on an open interval I. We say that f is concave up on I if f^{\prime} is increasing on I, and we say that f is concave down on I if f^{\prime} is decreasing on I. We call $(c, f(c))$ an inflection point of the graph of f, if f is concave up on one side of c and and concave down on the other side.

Concavity Theorem

Let f be twice differentiable on the open interval l.

Concavity Theorem

Let f be twice differentiable on the open interval l.

- If $f^{\prime \prime}(x)>0$ for all $x \in I$ then f is concave up on I.

Concavity Theorem

Let f be twice differentiable on the open interval l.

- If $f^{\prime \prime}(x)>0$ for all $x \in I$ then f is concave up on I.
- If $f^{\prime \prime}(x)<0$ for all $x \in I$ then f is concave down on I.

Local extrema

Let S, the domain of f, contain a certain point c.

Local extrema

Let S, the domain of f, contain a certain point c.

- $f(c)$ is a local maximum value of f on S if there is an interval (a, b) containing c such that $f(c)$ is the maximum value on $S \cap(a, b)$.

Local extrema

Let S, the domain of f, contain a certain point c.

- $f(c)$ is a local maximum value of f on S if there is an interval (a, b) containing c such that $f(c)$ is the maximum value on $S \cap(a, b)$.
- $f(c)$ is a local minimum value of f on S if there is an interval (a, b) containing c such that $f(c)$ is the minimum value on $S \cap(a, b)$.

Local extrema

Let S, the domain of f, contain a certain point c.

- $f(c)$ is a local maximum value of f on S if there is an interval (a, b) containing c such that $f(c)$ is the maximum value on $S \cap(a, b)$.
- $f(c)$ is a local minimum value of f on S if there is an interval (a, b) containing c such that $f(c)$ is the minimum value on $S \cap(a, b)$.
- $f(c)$ is a local extreme value of f if it is either a local maximum value or a local minimum value.

First Derivative Theorem

Let f be a continuous function on an open interval $I=(a, b)$ that contains a critical point c.

First Derivative Theorem

Let f be a continuous function on an open interval $I=(a, b)$ that contains a critical point c.

- If $f^{\prime}(x)>0$ for all x in (a, c) and $f^{\prime}(x)<0$ for all x in (c, b) then $f(c)$ is a local maximum.

First Derivative Theorem

Let f be a continuous function on an open interval $I=(a, b)$ that contains a critical point c.

- If $f^{\prime}(x)>0$ for all x in (a, c) and $f^{\prime}(x)<0$ for all x in (c, b) then $f(c)$ is a local maximum.
- If $f^{\prime}(x)<0$ for all x in (a, c) and $f^{\prime}(x)>0$ for all x in (c, b) then $f(c)$ is a local minimum.

Second Derivative Theorem

Let f^{\prime} and $f^{\prime \prime}$ exist at every point in an open interval $I=(a, b)$ containing c and suppose $f^{\prime}(c)=0$.

Second Derivative Theorem

Let f^{\prime} and $f^{\prime \prime}$ exist at every point in an open interval $I=(a, b)$ containing c and suppose $f^{\prime}(c)=0$.

- If $f^{\prime \prime}(c)<0$ then $f(c)$ is a local maximum of f.

Second Derivative Theorem

Let f^{\prime} and $f^{\prime \prime}$ exist at every point in an open interval $I=(a, b)$ containing c and suppose $f^{\prime}(c)=0$.

- If $f^{\prime \prime}(c)<0$ then $f(c)$ is a local maximum of f.
- If $f^{\prime \prime}(c)>0$ then $f(c)$ is a local minimum of f.

