
MTH3338 PARTIAL DIFFERENTIAL EQUATIONS

The books we will use in this course are given as follows:

1. Ian Sneddon , Elements of Partial Di¤erential Equations, McGraw-Hill
International Editions (Mathematics Series), 1985

2. Richard Haberman, Applied Partial Di¤erential Equations: with Fourier
Series and Boundary Value Problems (Fourth Edition), Pearson Education (2004)

SECTION 1. ORDINARY DIFFERENTIAL EQUATIONS IN
MORE THAN TWO VARIABLES

1.1. Curves and Surfaces in 3-dimensional space

Surfaces in Three Dimensions

If the rectangular cartesian coordinates (x; y; z) of a point in three dimen-
sional space are connected by a single relation of the type

f (x; y; z) = 0 (1)

the point lies on a surface. For this reason, we call the relation (1) the
equation of a surface S. In other words, equation (1) is a relation satis�ed by
points which lie on a surface.
Such a surface is also represented by the equation z = F (x; y) :
In three dimensional space, there is another important representation of the

surfaces. If we have a set of relations of the form

x = F1 (u; v) ; y = F2 (u; v) ; z = F3 (u; v) (2)

then to each pair of values of u,v there corresponds a set of numbers (x; y; z)
and hence a point in space.
If we solve the �rst pair of equations

x = F1 (u; v) ; y = F2 (u; v) ;

we can write u and v as functions of x and y

u = � (x; y) ; v = � (x; y) :

The corresponding value of z is obtained by substituting these values for u
and v into the third of the equation (2). That is, the value of z is determined
as

z = F3 (� (x; y) ; � (x; y))

so that there is a functional relation of type (1) between the three coordinates
x; y and z. Equation (1) expresses that the point (x; y; z) lies on a surface. The
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equations (2) express that any point (x; y; z) determined from them always lies
on a �xed surface. For this reason, equations of this type are called �parametric
equations�of a surface. It is observed that parametric equations of a surface
are not unique, that is, the surface (1) can be represented by di¤erent forms of
the functions F1; F2; F3 of the set (2).
As an example, the set of parametric equations

x = a sinu cos v ; y = a sinu sin v ; z = a cosu

and the set

x =
a
�
1� v2

�
1 + v2

cosu ; y =
a
�
1� v2

�
1 + v2

sinu ; z =
2av

1 + v2

represent the spherical surface

x2 + y2 + z2 = a2:

A surface in three dimensional space can be considered as being generated by
a curve. Indeed, a point whose coordinates verify equation (1) and which lies in
the plane z = k (k is parameter) has the coordinates satisfying the equations

z = k ; f (x; y; k) = 0 (3)

which shows that the point (x; y; z) lies on a curve �k in the plane z = k.
Another example, if S is the sphere with x2 + y2 + z2 = a2; then points of S

with z = k have
z = k ; x2 + y2 = a2 � k2;

which shows that �k is a circle of radius
�
a2 � k2

�1=2
: As k changes from �a

to a; each point of the sphere is covered by one such circle.

Curves in Three Dimensions

The curve given by the pair of equations (3) can be considered as the inter-
section of the surface (1) with the plane z = k: This idea can be generalized.
Let the surfaces S1 and S2 be given by the relations

F (x; y; z) = 0 ; G (x; y; z) = 0;

respectively. If these surfaces have common points, the coordinates of these
points satisfy a pair of equations

F (x; y; z) = 0 ; G (x; y; z) = 0: (4)

The surfaces S1 and S2 intersect in a curve C so that the locus of a point whose
coordinates satisfy a pair of equations (4) is a curve in a space.
A curve may be represented by parametric equations as a surface. Any three

equations of the form

x = f1 (t) ; y = f2 (t) ; z = f3 (t) (5)
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in which t is continuous variable, may be considered as the parametric equa-
tions of a curve.

Tangent of a Curve

We assume that P is any point on the curve

x = x (s) ; y = y (s) ; z = z (s) (6)

which is characterized by the value s of the arc length. Then s is the distance
P0P of P from some �xed point P0 measured along the curve. Similarly, if Q
is a point at a distance �s along the curve from P; the distance P0Q becomes
s+ �s and the coordinates of Q will be fx (s+ �s) ; y (s+ �s) ; z (s+ �s)g :
The distance �s is the distance from P to Q measured along the curve and

is greater than �c; the length of the chord PQ: As Q approaches the point P;
the di¤erence �s � �c becomes relatively less. Therefore, we shall con�ne

lim
�s!0

�c
�s
= 1: (7)

On the other hand, the direction cosines of the chord PQ are�
x (s+ �s)� x (s)

�c
;
y (s+ �s)� y (s)

�c
;
z (s+ �s)� z (s)

�c

�
:

Dividing by increment �s and taking limit �s ! 0 by use of the limit (7),
the direction cosines of the tangent to the curve (6) at the point P are�

dx

ds
;
dy

ds
;
dz

ds

�
(8)

As �s tends to zero, the point Q tends to point P , and the chord PQ takes up
the direction to the tangent to the curve at P .

Normal of a Surface

Assume that the curve C given by the equations (6) lies on the surface S
whose equation is F (x; y; z) = 0 (Figure 5).
If

F (x (s) ; y (s) ; z (s)) = 0; (9)

the point (x (s) ; y (s) ; z (s)) of the curve lies on this surface. Let the curve
entirely on the surface, then (9) becomes an identity for all values of s:
If we di¤erentiate the equation (9) with respect to s, we have

@F

@x

dx

ds
+
@F

@y

dy

ds
+
@F

@z

dz

ds
= 0; (10)
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which shows that the tangent T to the curve C at the point P is perpendicular
to the vector �

@F

@x
;
@F

@y
;
@F

@z

�
: (11)

Also, this vector is perpendicular to the tangent to every curve lying on S and
passing through P . This vector is called as �Normal�to the surface S at the
point P .
If the equation of the surface S is given by

z = f (x; y)

and we denote
@z

@x
= p;

@z

@y
= q; (12)

then since F = f (x; y) � z; we have Fx = p; Fy = q; Fz = �1: Thus, unit
normal to the surface at the point (x; y; z) is

(p; q;�1)p
p2 + q2 + 1

: (13)

Tangent of a Curve which is Intersection of Two Surfaces

The equation of the tangent plane �1 at the point P (x; y; z) to the surface
S1 whose equation is F (x; y; z) = 0 is

(X � x) @F
@x

+ (Y � y) @F
@y

+ (Z � z) @F
@z

= 0 (14)

where (X;Y; Z) are the coordinates of any other point of the tangent plane.
Similarly, the equation of the tangent plane �2 at P to the surface S2 whose
equation is G (x; y; z) = 0 is

(X � x) @G
@x

+ (Y � y) @G
@y

+ (Z � z) @G
@z

= 0: (15)

The intersection L of the planes �1 and �2 is the tangent at P to the curve C,
which is the intersection of S1 and S2:
From (14) and (15), the equations of the line L are

X � x
FyGz � FzGy

=
Y � y

FzGx � FxGz
=

Z � z
FxGy � FyGx

: (16)

Also, the direction ratios of the line L are

fFyGz � FzGy; FzGx � FxGz; FxGy � FyGxg

or �
@ (F;G)

@ (y; z)
;
@ (F;G)

@ (z; x)
;
@ (F;G)

@ (x; y)

�
: (17)
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Example 1 The direction cosines of the tangent at the point (x; y; z) to the
conic x2�y2+2z2 = 1; x+y+z = 1 are proportional to (�y � 2z; 2z � x; x+ y) :

F = x2 � y2 + 2z2 � 1
G = x+ y + z � 1

So, @(F;G)@(y;z) =

���� �2y 4z
1 1

���� = 2 (�y � 2z) ; etc. from (17).
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