
1.2. Simultaneous di¤erential equations of the �rst order and �rst
degree

Consider the systems of simultaneous di¤erential equations of the �rst order
and �rst degree of the type

dxi
dt

= fi (t; x1; x2; :::; xn) ; i = 1; 2; :::; n: (1)

Here, the problem is to determine the functions xi = xi (t) satisfying the
initial cond�tions xi (t0) = ai ( i = 1; 2; :::; n) :
For example, a di¤erential equation of the n-th order

dnx

dtn
= f

�
t; x;

dx

dt
;
d2x

dt2
; :::;

dn�1x

dtn�1

�
(2)

can be written in the form

dx

dt
= y1

dy1
dt

= y2

...

dyn�2
dt

= yn�1

dyn�1
dt

= f (t; x; y1; y2; :::; yn�1)

which is special case of (1).
The system of (1) may be written in the form

dx1
f1 (t; x1; x2; :::; xn)

=
dx2

f2 (t; x1; x2; :::; xn)
= ::: =

dxn
fn (t; x1; x2; :::; xn)

= dt;

which has important role in the theory of partial di¤erential equations.

1.2.1. Simultaneous di¤erential equations of the �rst order and
�rst degree in three variables

Let P;Q; and R be functions of x; y; and z in the region 
 � R3: Consider
the systems in three variables

dx

P
=
dy

Q
=
dz

R
(3)

The solutions of the equations (3) trace out curves such that at the point
(x; y; z) the direction cosines of the curves are proportional to (P;Q;R) :

The existence and uniqueness of solutions of the equations of the type (3) is
proved in the book [Shepley L. Ross, Di¤erential Equations, John Wiley, 1974]
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Theorem 1 If the functions f1 (x; y; z) and f2 (x; y; z) are continuous in the
region de�ned by jx� aj < p; jy � bj < r ; jz � cj < s; and if the functions
satisfy a Lipschitz condition in the form

jf1 (x; y; z)� f1 (x; �; �)j � A1 jy � �j+B1 jz � �j ;
jf2 (x; y; z)� f2 (x; �; �)j � A2 jy � �j+B2 jz � �j

in the region, then in a suitable interval jx� aj < h there exists a unique pair
functions y (x) and z (x) which are continuous and have continuous derivatives
in that interval so that they satisfy the di¤erential equation

dy

dx
= f1 (x; y; z) ;

dz

dx
= f2 (x; y; z) ;

which have y (a) = b ; z (a) = c: Here a; b; and c are arbitrary.

According to the theorem, there exists a cylinder y = y (x) passing through
the point (a; b; 0) and a cylinder z = z (x) passing through the point (a; 0; c)
such that

dy

dx
= f1 ;

dz

dx
= f2:

The solution of the pair of these equations consists of the set of common points
of the cylinders y = y (x) and z = z (x) ; that is it consists of the curve of
intersection �: This curve depends on choice of initial conditions, i.e., it is the
curve both satisfying the pair of di¤erential equations and passing through the
point (a; b; c) :
Since the numbers a; b; c are arbitrary, the general solution of the given pair

equations will consists of the curves which are formed by the intersection of one-
parameter system of cylinders containing y = y (x) with another one-parameter
system of cylinders of which z = z (x) is a particular member. That is, the
general solution of (3) is a two-parameter family of curves.

1.2.2. Methods of solution dx
P = dy

Q = dz
R

Consider
dx

P
=
dy

Q
=
dz

R
(4)

From (4), if we can �nd two relations of the form

u1 (x; y; z) = c1 ; u2 (x; y; z) = c2 (5)

which involve two arbitrary constants c1 and c2; then we can write a two-
parameter family of curves satisfying the di¤erential equations (4).

2



Method I.

dx

P
=
dy

Q
=
dz

R
= dk

) �dx+ �dy + �dz

�P + �Q+ �R
=
�Pdk + �Qdk + �Rdk

�P + �Q+ �R
= dk

(�; �; � arbitrary)

Sometimes, it is possible to choose �; �; � such that �P + �Q+ �R � 0: For
such multipliers, it should be

�dx+ �dy + �dz = 0:

If the expression �dx+ �dy + �dz is an exact di¤erential, then

�dx+ �dy + �dz = du

) u = c1

holds.
Example 1. Find the integral curves of the equations

dx

y (x+ y)� az =
dy

x (x+ y) + az
=

dz

z (x+ y)
:

Solution: If we choose �; �; and � as � = 1
z ; � =

1
z and � = �

x+y
z2 ; we obtain

�dx+ �dy + �dz

�P + �Q+ �R
=

1
zdx+

1
zdy �

x+y
z2 dz

x
z (x+ y) + a+

y
z (x+ y)� a�

(x+y)2

z

=
1
zdx+

1
zdy �

x+y
z2 dz

0

) 1

z
dx+

1

z
dy � x+ y

z2
dz = 0

) dx+ dy

x+ y
� 1
z
dz = 0

) d (x+ y)

x+ y
� 1
z
dz = 0

) ln (x+ y)� ln z = ln c1

) x+ y

z
= c1 = u1 (x; y; z)

On the other hand, if we choose � = �x; � = y; and � = �a; we obtain

ydy � xdx� adz
xy (x+ y) + ayz � xy (x+ y) + axz � az (x+ y) =

ydy � xdx� adz
0
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) ydy � xdx� adz = 0

) y2

2
� x

2

2
� az = c2

2

) y2 � x2 � 2az = c2 = u2 (x; y; z) :

Hence, the integral curves of the given di¤erential equations are the members
of the two-parameter family

x+ y

z
= c1 = u1 (x; y; z)

and
y2 � x2 � 2az = c2 = u2 (x; y; z) :

Method II.

For the multiplier �1; �1; �1 and �2; �2; �2;

�1dx+ �1dy + �1dz

�1P + �1Q+ �1R
=
�2dx+ �2dy + �2dz

�2P + �2Q+ �2R
:

If the expressions on the both sides are exact di¤erential and say W1 and W2;
then

dW1 = dW2 )W1 =W2 + C

is satis�ed.
Example 2. Solve the equations

dx

y + z
=

dy

z + x
=

dz

x+ y
:

Solution: Each of these ratios is equal to

�dx+ �dy + �dz

� (y + z) + � (z + x) + � (x+ y)
:

For suitable �; �; and � constant multiplier, we can write

dx+ dy + dz

2 (x+ y + z)
=
dx� dy
y � x =

dx� dz
z � x :

From

) dx+ dy + dz

2 (x+ y + z)
=
dx� dy
y � x

) ln (x+ y + z) + 2 ln (x� y) = ln c1
) u1 (x; y; z) = (x+ y + z) (x� y)2 = c1:

From
dx+ dy + dz

2 (x+ y + z)
=
dx� dz
z � x ;
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it follows
u2 (x; y; z) = (x+ y + z) (x� z)2 = c2:

Method III.

By using u1 = c1 which is obtained via one of the above methods, we can
�nd u2 = c2:
Example 3. Find the integral curves of the equations

dx

x
=

dy

y + z
=

dz

z + x2
: (6)

Solution: From
dx

x
=

dz

z + x2
) dz

dx
� z

x
= x (Linear Equ.)

� =
1

x
(integrating factor)

) 1

x

dz

dx
� z

x2
= 1

) d

dx

� z
x

�
= 1

) z

x
= x+ c1

) z = c1x+ x
2 (7)

From (6), we have

) dy

y + z
=
dx

x

) dy

dx
=
y

x
+
z

x

)
From (7)

dy

dx
=
y

x
+ x+ c1

) dy

dx
� y

x
= x+ c1(Linear Equ.)

� =
1

x
(integrating factor)

) 1

x

dy

dx
� y

x2
= 1 +

c1
x

) d

dx

�y
x

�
= 1 +

c1
x

) y

x
= c1 lnx+ x+ c2

) y = c1x lnx+ x
2 + c2x (8)

The integral curves of the given di¤erential equations (6) are determined by the
equations (7) and (8).
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