CONTROL SYSTEMS

Doç. Dr. Murat Efe

WEEK 1

Course Outline

PART 1

- Introduction to Control Engineering
- Review of Complex Variables \& Functions
- Review of Laplace Transform
o Review of Linear Algebra

PART 2

- Linear Differential Equations
o Obtaining Transfer Functions (TFs)
- Block Diagrams
- An Introduction to Stability for TFS
- Concept of Feedback and Closed Loop
- Basic Control Actions, P-I-D Effects

PART 3

- Concept of Stability
- Stability Analysis of the Closed Loop System by Routh Criterion
- State Space Representation and Stability

PART 4
o Transient Response Analysis

- First Order Systems
- Second Order Systems
- Using MATLAB with Simulink
- Steady State Error's

PARTS 5-6

- Root Locus Analysis
- Design Based on Root Locus
- Midterm

PART 7

- Frequency Response Analysis
- Bode Plots

O Gain Margin and Phase Margin

- Polar Plots and Margins

O Nyquist Stability Criterion

PARTS 8-9

- Design of Control Systems in State Space
- Canonical Realizations
- Controllability and Observability
- Linear State Feedback
- Pole Placement
- Bass-Gura and Ackermann Formulations
- Properties of State Feedback

O Observer Design and
Observer Based Compensators

PART 10

- Concept of Robustness
- Concept of Optimality
- Concept of Adaptive Systems
- Concept of Intelligence in Control

PART 11

- Final Exam

P-1 Introduction to Dynamical Systems

© Honda, Humanoid Robot

Industrial process control

Courtesy: Efe, Acay, Unsal, Vande Weghe, Khosla, Carnegie Mellon University, 2001

Control of unmanned aerial vehicles

Courtesy: Acay Carnegie Mellon University, 2001

Chemical process control

What is a dynamic system?

A dynamical system is a concept in mathematics where a fixed rule describes the time dependence of a point in a geometrical space.

What is control theory?

The mathematical study of how to manipulate the parameters affecting the behavior of a system to produce the desired or optimal outcome.

http://mathworld.wolfram.com/ControlTheory.html

How to classify in terms of time?

- Continuous time systems
-Differential equations
- Laplace transform
- Discrete time systems
-Difference equations
${ }^{\circ}$ Issues of sampling
${ }^{\circ}$ z Transform

How to classify in terms of representation?

- Linear systems
-Differential equations
-Difference equations
- Nonlinear systems
-Differential equations
-Difference equations

How to classify in terms of representation?

- Ordinary Differential Equations
- Partial Differential Equations

What common alternatives do we have?

- Proportional Integral Derivative
- Classical control
- State space methods
- Optimal control
- Robust control
- Nonlinear control
- Stochastic control
- Adaptive control
- Intelligent control

O~ロ■

What engineering aspects should we consider?

- Disturbance rejection
- Insensitivity to parameter variations
- Stability
- Rise time
- Overshoot
- Settling time
- Steady state error
- ...

What else should we think about?

- Cost (money/time)
- Computational complexity
- Manufacturability (any extraordinary requirements?)
- Reliability (mean time between failures)
- Adaptability (with low cost for similar applications)
- Understandability
- Politics (opinions of your boss and distance from standard practice)

What mathematical tools shall we use?

- Calculus \& Linear Algebra
- Laplace Transform
- Fourier Transform
- Complex Variables and Functions
- Ordinary Differential Equations (ODE)
- ...

What sort of systems shall we cover?

P-1 Review of Complex Variables \& Functions

$$
\begin{aligned}
& s=\sigma+j \omega \\
& F(s)=F_{x}+j F_{y} \\
& |F(s)|=\left(F_{x}^{2}+F_{y}^{2}\right)^{1 / 2} \longrightarrow \text { Complex variable } \\
& \angle F(s)=\tan ^{-1} \frac{F_{y}}{F_{x}} \longrightarrow \text { Manction of the complex variable s } \\
& \bar{F}(s)=F_{x}-j F_{y} \\
& \text { Angle of the function } \mathrm{F}(\mathrm{~s}) \\
& \text { Complex conjugate of the }
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d s} G(s) & =\lim _{\Delta \sigma \rightarrow 0}\left(\frac{\Delta G_{x}}{\Delta \sigma}+j \frac{\Delta G_{y}}{\Delta \sigma}\right) \\
=\lim _{\Delta s \rightarrow 0} \frac{\Delta G}{\Delta s} & =\frac{\partial G_{x}}{\partial \sigma}+j \frac{\partial G_{y}}{\partial \sigma} \\
\frac{\lim _{\Delta s \rightarrow 0} \frac{G(s+\Delta s)-G(s)}{\Delta s}}{\frac{d}{d s} G(s)} & =\lim _{j \Delta \omega \rightarrow 0}\left(\frac{\Delta G_{x}}{j \Delta \omega}+j \frac{\Delta G_{y}}{j \Delta \omega}\right) \\
& =-j \frac{\partial G_{x}}{\partial \omega}+\frac{\partial G_{y}}{\partial \omega}
\end{aligned}
$$

If the derivative along these two directions give the same value

$$
\begin{aligned}
& \frac{\partial G_{x}}{\partial \sigma}+j \frac{\partial G_{y}}{\partial \sigma}=-j \frac{\partial G_{x}}{\partial \omega}+\frac{\partial G_{y}}{\partial \omega} \text { or } \\
& \frac{\partial G_{x}}{\partial \sigma}=\frac{\partial G_{y}}{\partial \omega} \text { and } \frac{\partial G_{y}}{\partial \sigma}=-\frac{\partial G_{x}}{\partial \omega} \quad \text { Cauchy-Riemann }
\end{aligned}
$$

Then the derivative dG(s)/ds can uniquely be determined

$$
\begin{aligned}
& G(s)=\frac{1}{s+1} \text { with } s=\sigma+j \omega \\
& \mathrm{G}(\sigma+j \omega)=\frac{1}{\sigma+j \omega+1}=G_{x}+j G_{y} \\
& G_{x}=\frac{\sigma+1}{(\sigma+1)^{2}+\omega^{2}} \text { and } G_{y}=\frac{-\omega}{(\sigma+1)^{2}+\omega^{2}}
\end{aligned}
$$

$$
\text { Except at } s=-1 \text { (i.e. } \sigma=-1 \text { and } \omega=0 \text {) }
$$

$$
\frac{\partial G_{x}}{\partial \sigma}=\frac{\partial G_{y}}{\partial \omega}=\frac{\omega^{2}-(\sigma+1)^{2}}{\left[(\sigma+1)^{2}+\omega^{2}\right]^{2}}
$$

$$
\frac{\partial G_{y}}{\partial \sigma}=-\frac{\partial G_{x}}{\partial \omega}=\frac{2 \omega(\sigma+1)}{\left[(\sigma+1)^{2}+\omega^{2}\right]^{2}}
$$

Hence the derivative dG(s)/ds is analytic in the entire s-plane except at $s=-1$; the derivative is as follows:
$\frac{d G(s)}{d s}=-\frac{1}{(s+1)^{2}}$

The derivative of an analytic function can be obtained by differentiating $\mathrm{G}(\mathrm{s})$ simply with respect to (w.r.t) s.

- The points at which the function $\mathrm{G}(\mathrm{s})$ is analytic are called ordinary points
- The points at which the function $\mathrm{G}(\mathrm{s})$ is not analytic are called singular points
- At singular points the function $\mathrm{G}(\mathrm{s})$ or its derivatives approach infinity, and these points are called poles
- The function $\mathrm{G}(\mathrm{s})=1 /(\mathrm{s}+1)$ has a pole at $\mathrm{s}=-1$, and this pole is single. $\mathrm{G}(\mathrm{s})=1 /(\mathrm{s}+1)^{\mathrm{p}}$ has p poles all at $\mathrm{s}=-1$.
- The function $\mathrm{G}(\mathrm{s})=(\mathrm{s}+3) /[(\mathrm{s}+1)(\mathrm{s}+2)]$ has two at $\mathrm{s}=-3$ and $\mathrm{s}=\infty$; and two poles at $\mathrm{s}_{1}=-1$ and $\mathrm{s}_{2}=-2$

Euler's Theorem

$$
\begin{aligned}
& \cos \theta=1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+\cdots \\
& \sin \theta=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\cdots \\
& \cos \theta+j \sin \theta=1+(j \theta)+\frac{(j \theta)^{2}}{2!}+\frac{(j \theta)^{3}}{3!}+\frac{(j \theta)^{4}}{4!}+\cdots \\
& \text { since } e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \\
& \cos \theta+j \sin \theta=e^{j \theta} \\
& \cos \theta=\frac{1}{2}\left(e^{j \theta}+e^{-j \theta}\right) \text { and } \sin \theta=\frac{1}{2}\left(e^{j \theta}-e^{-j \theta}\right)
\end{aligned}
$$

P-1 Review of Laplace Transform

$f(t) \quad$ A function of time such that $f(t)=0$ for $t<0$
$s \quad$ A complex variable
L Laplace operator
$F(s) \quad$ Laplace transform of $f(t)$

The Laplace transform is given by

$$
L\{f(t)\}=F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

The inverse Laplace transform is given by

$$
L^{-1}\{F(s)\}=f(t)=\frac{1}{2 \pi j} \int_{c-j \infty}^{c \sharp \mathbf{m}_{j} \omega} F(s) e^{s t} d s \text {, for } t>0
$$

Where c, the abscissa of convergence, is a real constant and is chosen larger than the real parts of all singular points of $F(s)$. Thus, the path of integration is parallel to the jo axis and is displaced by the amount c from it. This path of integration is to the right of all singular points.

When does the Laplace transform exist?

The Laplace transform exists if the Laplace integral converges, more explicitly
IF $\quad f(t)$ is sectionally continuous on every finite interval on the range $t>0$

AND
IF $\quad f(t)$ is of exponential order as $t \rightarrow \infty$

Which functions are of exponential order?

A function $f(t)$ is said to be of exponential order if a real positive σ exists such that

$$
\lim _{t \rightarrow \infty} e^{-\sigma t}|f(t)| \rightarrow 0
$$

If this limit approaches zero for $\sigma>\sigma_{c t}$ then σ_{c} is said to be the abscissa of convergence

For example

This is $f(t)$

$$
\lim _{t \rightarrow \infty} e^{-\sigma t}\left|A e^{-\alpha t}\right|
$$

- This limit approaches zero for $\sigma>-\alpha$.
- The abscissa of convergence is therefore $\sigma_{\mathrm{c}}=-\alpha$
- The Laplace integral will converge only if s , the real part of s, is greater than the abscissa of convergence

$$
L\{f(t)\}=F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

The Laplace integral

What is the abscissa of convergence of

$$
F(s)=\frac{K(s+a)}{(s+b)(s+c)}
$$

Hint: Find partial fractions, and take inverse Laplace transform, find $f(t)$, and check if

$$
\lim _{t \rightarrow \infty} e^{-\sigma t}|f(t)| \rightarrow 0
$$

The answer is $\sigma_{c}>\max (-b,-c)$. This will be clear after we see how to perform the inversion.

The first conclusion by Analytic Extension Theorem

If $L\{f(t)\}=F(s)$ is obtained, and σ_{c} is determined, $F(s)$ is valid on the entire s-plane except at the poles of $F(s)$.

The second conclusion by Physical Realizability

Functions like $f(t)=e^{t^{2}}$ or $f(t)=t e^{l^{2}}$, which increase faster than the exponential function, do not have Laplace transform, however, on finite time intervals they do.

