## CONTROL SYSTEMS



## Doç. Dr. Murat Efe

## WEEK 2

## Laplace transform of Exponential Function

$$
\begin{array}{|cc|}
\hline f(t)=0 & \text { for } t<0 \\
f(t)=A e^{-\alpha t} & \text { for } t \geq 0 \\
\text { where } \alpha \text { and } A \text { are constants }
\end{array}
$$

$$
L\left\{A e^{-\alpha t}\right\}=\int_{0}^{\infty} A e^{-\alpha t} e^{-s t} d t=\int_{0}^{\infty} A e^{-(s+\alpha) t} d t=\frac{A}{s+\alpha}
$$

## The abscissa of convergence: $s>-\alpha$

Exponential function produces a pole in the complex plane

## $f(t)=0 \quad$ for $t<0$ $f(t)=A \quad$ for $t>0$ <br> where $A$ is a constant

$$
L\{A\}=\int_{0}^{\infty} A e^{-s t} d t=\frac{A}{s}
$$

## The abscissa of convergence: $s>0$

Step function produces a pole at the origin of the complex plane

\section*{Laplace transform of Ramp Function <br> > | $f(t)=0$ | for $t<0$ |
| :--- | :--- |
| $f(t)=A t$ | for $t \geq 0$ | <br> <br> $f(t)=0 \quad$ for $t<0$ <br> <br> $f(t)=0 \quad$ for $t<0$ $f(t)=A t \quad$ for $t \geq 0$} $f(t)=A t \quad$ for $t \geq 0$}

$$
\begin{aligned}
L\{A t\} & =\int_{0}^{\infty} A t e^{-s t} d t=\left.A t \frac{e^{-s t}}{-s}\right|_{0} ^{\infty}-\int_{0}^{\infty} A \frac{e^{-s t}}{-s} d t \\
& =\frac{A}{s} \int_{0}^{\infty} e^{-s t} d t=-\left.\frac{A}{s^{2}} e^{-s t}\right|_{0} ^{\infty}=\frac{A}{s^{2}}
\end{aligned}
$$

Ramp function produces double poles at the origin of the complex plane

Laplace transform of Sinusoidal Function

$$
\begin{array}{cc}
f(t)=0 & \text { for } t<0 \\
f(t)=A \sin \omega t & \text { for } t \geq 0
\end{array}
$$

where $A$ and $\omega$ are constants

$$
\begin{aligned}
L\{A \sin \omega t\} & =\int_{0}^{\infty} A \sin \omega t e^{-s t} d t=\int_{0}^{\infty} \frac{A}{2 j}\left(e^{j \omega t}-e^{-j \omega t}\right) e^{-s t} d t \\
& =\frac{A}{2 j} \frac{1}{s-j \omega}-\frac{A}{2 j} \frac{1}{s+j \omega}=\frac{A \omega}{s^{2}+\omega^{2}} \text { Similarly } \\
L\{A \cos \omega t\} & =\frac{A s}{s^{2}+\omega^{2}}
\end{aligned}
$$

## Several Properties of Laplace Transform \&

## Laplace Transforms of Important Functions

$$
L\{f(t)\}=F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

$$
L\left\{a_{1} f_{1}(t)+a_{2} f_{2}(t)\right\}=a_{1} L\left\{f_{1}(t)\right\}+a_{2} L\left\{f_{2}(t)\right\}
$$

$$
\begin{aligned}
\mathcal{L}\{\alpha f(t)+\beta g(t)\} & =\int_{0}^{\infty}(\alpha f(t)+\beta g(t)) e^{-s t} \mathrm{~d} t \\
& =\int_{0}^{\infty}{ }_{\alpha f(t)} e^{-s t} \mathrm{~d} t+\int_{0}^{\infty} \beta g(t) e^{-s t} \mathrm{~d} t \\
& =\alpha \int_{0}^{\infty} f(t) e^{-s t} \mathrm{~d} t+\beta \int_{0}^{\infty} g(t) e^{-s t} \mathrm{~d} t \\
& =\alpha \mathcal{L}\{f(t)\}+\beta \mathcal{L}\{g(t)\}
\end{aligned}
$$

$$
L\{f(t-\tau)\}=e^{-\tau s} F(s)
$$

$$
L\{f(t)\}=F(s)
$$

$$
\begin{aligned}
\mathcal{L}\{f(t-a)\} & =\int_{0}^{\infty} f(t-a) e^{-s t} \mathrm{~d} t \\
& =\int_{-a}^{\infty} f(y) e^{-s(a+y)} \mathrm{d} y \\
& =\int_{0}^{\infty} f(y) e^{-s(a+y)} \mathrm{d} y \\
& =e^{-a s} \int_{0}^{\infty} f(y) e^{-s y} \mathrm{~d} y
\end{aligned}
$$

$$
L\left\{e^{-a t} f(t)\right\}=F(s+a)
$$

$$
L\{f(t)\}=F(s)
$$

$$
\begin{aligned}
\mathcal{L}\left\{e^{-a t} f(t)\right\} & =\int_{0}^{\infty} e^{-a t} f(t) e^{-s t} \mathrm{~d} t \\
& =\int_{0}^{\infty} f(t) e^{-(s+a) t} \mathrm{~d} t
\end{aligned}
$$

$$
L\{f(t / a)\}=a F(a s)
$$

$L\{f(t)\}=F(s)$

$$
\begin{aligned}
\mathcal{L}\left\{f\left(\frac{t}{a}\right)\right\} & =\int_{0}^{\infty} f\left(\frac{t}{a}\right) e^{-s t} \mathrm{~d} t \\
& =\int_{0}^{\infty} f(y) e^{-s a y} a \mathrm{~d} y \\
& =a \int_{0}^{\infty} f(y) e^{-(a s) y} \mathrm{~d} y \\
& =a F(a s)
\end{aligned}
$$

$$
L\left\{\frac{d}{d t} f(t)\right\}=s F(s)-f(0)
$$

$$
L\{f(t)\}=F(s)
$$

$$
\begin{aligned}
\int_{0}^{\infty} f(t) e^{-s t} \mathrm{~d} t & =\left.f(t) \frac{e^{-s t}}{-s}\right|_{0} ^{\infty}-\int_{0}^{\infty} \frac{\mathrm{d} f(t)}{\mathrm{d} t} \frac{e^{-s t}}{-s} \mathrm{~d} t \\
F(s) & =\frac{f(0)}{s}+\frac{1}{s} \int_{0}^{\infty} \frac{\mathrm{d} f(t)}{\mathrm{d} t} e^{-s t} \mathrm{~d} t
\end{aligned}
$$

$$
\mathcal{L}\left\{\frac{\mathrm{d} f(t)}{\mathrm{d} t}\right\}=s F(s)-f(0)
$$

$$
L\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\frac{1}{s} F(s)
$$

$L\{f(t)\}=F(s)$

$$
\mathcal{L}\left\{\int_{0}^{t} f(y) \mathrm{d} y\right\}=\int_{0}^{\infty}\left(\int_{0}^{t} f(y) \mathrm{d} y\right) e^{-s t} \mathrm{~d} t
$$

## Apply integration by parts

$$
\begin{aligned}
& \int_{0}^{\infty}\left(\int_{0}^{t} f(y) \mathrm{d} y\right) e^{-s t} \mathrm{~d} t=\left.\left(\int_{0}^{t} f(y) \mathrm{d} y\right) \frac{e^{-s t}}{-s}\right|_{0} ^{\infty}-\int_{0}^{\infty} f(t) \frac{e^{-s t}}{-s} \mathrm{~d} t \\
&= \frac{1}{s} \int_{0}^{\infty} f(t) e^{-s t} \mathrm{~d} t \\
& \mathcal{L}\left\{\int_{0}^{t} f(y) \mathrm{d} y\right\}=\frac{1}{s} F(s)
\end{aligned}
$$

$$
L\{t f(t)\}=\frac{d}{d s} F(s)
$$

$$
L\{f(t)\}=F(s)
$$

$$
\mathcal{L}\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{\mathrm{~d}^{n}}{\mathrm{~d} s^{n}} F(s)
$$

$$
\begin{gathered}
f(t)=\frac{A}{t_{0}} \quad \text { for } 0<t<t_{0} \\
\left.f(t)=0 \quad \text { for } t<0, t_{0}<t\right) f(t)=\frac{A}{t_{0}} 1(t)-\frac{A}{t_{0}} 1\left(t-t_{0}\right) \\
L\{f(t)\}=L\left\{\frac{A}{t_{0}} 1(t)-\frac{A}{t_{0}} 1\left(t-t_{0}\right)\right\} \\
=\frac{A}{t_{0}}\left(L\{1(t)\}-L\left\{1\left(t-t_{0}\right)\right\}\right) \\
=\frac{A}{t_{0}} L\{1(t)\}\left(1-e^{-s t_{0}}\right) \\
=\frac{A}{t_{0}} \frac{1}{s}\left(1-e^{-s t_{0}}\right)
\end{gathered}
$$

$$
L\left\{\lim _{t_{0} \rightarrow 0} f(t)\right\}=\lim _{t_{0} \rightarrow 0}\left(\frac{A}{t_{0}} \frac{1}{s}\left(1-e^{-s t_{0}}\right)\right)=A
$$

$L\{f(t)\}=F(s)$


## $f(0+)=\lim s F(s)$

$L\{f(t)\}=F(s)$
this theorem can be applicable if
$f(1)$ and of (1) did are both Laplace transformable The limit on the right hand side exists

$$
L\{f(t) * g(t)\}=F(s) G(s)
$$

$$
f(t) * g(t)=\int_{0}^{\boldsymbol{T}} f(\tau) g(t-\tau) d \tau
$$

$$
L\{f(t) g(t)\}=F(s) * G(s)
$$

## $t-y:=p$

$\int_{0}^{\infty} \int_{0}^{\infty} f(y) g(t-y) e^{-s t} \mathrm{~d} y \mathrm{~d} t=\int_{0}^{\infty} \int_{0}^{\infty} f(y) g(t-y) e^{-s t} \mathrm{~d} t \mathrm{~d} y$

$$
=\int_{0}^{\infty} \int_{-y}^{\infty} f(y) g(p) e^{-s(p+y)} \mathrm{d} p \mathrm{~d} y
$$

$$
=\int_{0}^{\infty} \int_{0}^{\infty} f(y) g(p) e^{-s(p+y)} \mathrm{d} y \mathrm{~d} p
$$

$$
=\int_{0}^{\infty} f(y) e^{-s y} \mathrm{~d} y \int_{0}^{\infty} g(p) e^{-s p} \mathrm{~d} p
$$

$$
=\mathcal{L}\{f(t)\} \mathcal{L}\{g(t)\}
$$

## Inverse Laplace Transform

## Typical Inversion Methods

- Use of inversion integral

Complicated and generally takes long time

- Use of table (Textbook pp.22-23)

Easiest way but you may not always be able to find what you are looking for in the table explicitly

## Partial Fraction Expansion

Consider

$$
F(s)=\frac{B(s)}{A(s)}=\frac{K\left(s+z_{1}\right)\left(s+z_{2}\right) \cdots\left(s+z_{m}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right) \cdots\left(s+p_{n}\right)}
$$

where $\mathrm{m}<\mathrm{n}$.

If $m=n$, then find out the constant term and separately write in the expansion, then invert. If $m>n$, then find out the polynomial in $s$, and write and invert it separately. $-z_{i}^{\prime} s$ are zeros and $-p_{i}^{\prime}$ 's are poles.
Poles and zeros may be complex numbers as well

## If $m<n$, the expression

$$
F(s)=\frac{B(s)}{A(s)}=\frac{K\left(s+z_{1}\right)\left(s+z_{2}\right) \cdots\left(s+z_{m}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right) \cdots\left(s+p_{n}\right)}
$$

## can be expanded as

$$
F(s)=\frac{B(s)}{A(s)}=\frac{a_{1}}{s+p_{1}}+\frac{a_{2}}{s+p_{2}}+\cdots+\frac{a_{n}}{s+p_{n}}
$$

where

$$
a_{i}=\left[\left(s+p_{i}\right) F(s)\right]_{s=-p_{i}}
$$

Consider

$$
F(s)=\frac{B(s)}{A(s)}=\frac{B(s)}{\left(\prod_{i=1}^{m}\left(s+p_{i}\right)\right)(s+\alpha)^{q}}
$$

where, $\operatorname{deg} \mathrm{A}<\mathrm{q}+\mathrm{m}$. This expression can be expanded as

$$
F(s)=\frac{B(s)}{A(s)}=\sum_{i=1}^{m} \frac{a_{i}}{s+p_{i}}+\sum_{j=1}^{q} \frac{c_{j}}{(s+\alpha)^{j}}
$$

with
$c_{q-k}=\left[\frac{1}{k!} \frac{d^{k}}{d s^{k}}\left((s+\alpha)^{q} F(s)\right)\right]_{s=-\alpha}$ $k=0,1$,

## Example (2.3 from book)

## Find the inverse Laplace transform of

$$
\frac{1}{(s+1)(s+2)}=\frac{R_{1}}{s+1}+\frac{R_{2}}{s+2}
$$

## Example (2.4 from book)

## Find the inverse Laplace transform of

$$
\begin{gathered}
\frac{1}{\left(s^{2}+1\right)(s+2)}=\frac{R_{1}}{s+j}+\frac{R_{2}}{s-j}+\frac{R_{3}}{s+2} \\
R_{1}=\left.((s+j) F(s))\right|_{s=-j}=-\frac{1}{10}+j \frac{1}{5} \\
R_{2}=\left.((s-j) F(s))\right|_{s=j}=-\frac{1}{10}-j \frac{1}{5}=\bar{R}_{1} \\
R_{3}=\left.((s+2) F(s))\right|_{s=-2}=\frac{1}{5}
\end{gathered}
$$

$$
f(t)=\left(\frac{1}{5} e^{-2 t}+\left(-\frac{1}{10}+j \frac{1}{5}\right) e^{-j t}+\left(-\frac{1}{10}-j \frac{1}{5}\right) e^{j t}\right) 1(t)
$$

$$
\begin{aligned}
& e^{j t}+e^{-j t}=2 \cos (t) \\
& e^{j t}-e^{-j t}=2 j \sin (t)
\end{aligned}
$$

$$
f(t)=\frac{1}{5}\left(e^{-2 t}-\cos (t)+2 \sin (t)\right) 1(t)
$$

## An Example

## Find the inverse Laplace transform of

$$
F(s)=\frac{B(s)}{A(s)}=\frac{s+3}{(s+1)(s+2)^{3}}
$$

## Solution: Rewrite it as

$$
F(s)=\frac{a_{1}}{s+1}+\frac{c_{1}}{s+2}+\frac{c_{2}}{(s+2)^{2}}+\frac{c_{3}}{(s+2)^{3}}
$$

$$
a_{1}=[(s+1) F(s)]_{s=-1}=2
$$

$$
\begin{aligned}
& c_{3}=\left[(s+2)^{3} F(s)\right]_{s=-2}=-1 \\
& c_{2}=\frac{d}{d s}\left[(s+2)^{3} F(s)\right]_{s=-2}=-2
\end{aligned}
$$

$$
c_{1}=\frac{1}{2!} \frac{d^{2}}{d s^{2}}\left[(s+2)^{3} F(s)\right]_{s=-2}=-2
$$

$$
\begin{aligned}
& F(s)=\frac{2}{s+1}+\frac{-2}{s+2}+\frac{-2}{(s+2)^{2}}+\frac{-1}{(s+2)^{3}} \\
& \hline\left\{\left\{\frac{t^{n-1} e^{-a t}}{(n-1)!}\right\}=\frac{1}{(s+a)^{n}} \text { where } n=1,2,3, \ldots\right. \\
& f(t)=2 e^{-t}-2 e^{-2 t}-2 t e^{-2 t}-\frac{1}{2} t^{2} e^{-2 t} \\
& f(t)=2 e^{-t}-(1 / 2)\left(4+4 t+t^{2}\right) e^{-2 t}
\end{aligned}
$$

## Example (2.5 from book)

## Find the inverse Laplace transform of

$$
F(s)=\frac{(s+1)^{3}}{(s+2)^{4}}
$$

$$
\begin{gathered}
F(s)=\frac{R_{1}}{s+2}+\frac{R_{2}}{(s+2)^{2}}+\frac{R_{3}}{(s+2)^{3}}+\frac{R_{4}}{(s+2)^{4}} \\
R_{4}=\left.\left((s+2)^{4} F(s)\right)\right|_{s=-2}=-1 \\
R_{3}=\left.\left(\frac{\mathrm{d}}{\mathrm{~d} s}(s+2)^{4} F(s)\right)\right|_{s=-2}=3 \\
R_{2}=\left.\frac{1}{2!}\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} s^{2}}(s+2)^{4} F(s)\right)\right|_{s=-2}=-3 \\
R_{1}=\left.\frac{1}{3!}\left(\frac{\mathrm{d}^{3}}{\mathrm{~d} s^{3}}(s+2)^{4} F(s)\right)\right|_{s=-2}=1 \\
F(s)=\frac{1}{s+2}+\frac{-3}{(s+2)^{2}}+\frac{3}{(s+2)^{3}}+\frac{-1}{(s+2)^{4}}
\end{gathered}
$$

$$
\mathcal{L}\left\{e^{\left.-2 t_{1}(t)\right\}}\right\}=\frac{1}{s+2}=Q(s)
$$

$$
\mathcal{L}\left\{t^{-2 t} 1(t)\right\}=\frac{-d}{\boldsymbol{a}^{d} Q(s)}=\frac{1}{(s+2))^{2}}
$$

$$
\mathcal{L}\left\{t^{2} e^{-2 t} 1(t)\right\}=\frac{\mathrm{d}^{2}}{\mathrm{ds}} \mathrm{~s}^{2}(s)=\frac{2}{(s+2)^{3}}
$$

$$
\mathcal{L}\left\{t^{3} e^{-2 t}(t)\right\}=-\frac{\mathrm{d}^{3}}{\mathrm{~d} s^{s}} Q(s)=\frac{6}{(s+2)^{4}}
$$

$$
f(t)=-\frac{1}{6}\left(t^{3}-9 t^{2}+18 t-6\right) e^{-2 t_{1}(t)}
$$

| $\delta(t)$ | 1 |
| :--- | :--- |
| $1(t)$ | $\frac{1}{s}$ |
| $t$ | $\frac{1}{s^{2}}$ |
| $\frac{t^{n-1}}{(n-1)!}(n=1,2,3, \ldots)$ | $\frac{1}{s^{n}}$ |
| $e^{-a t}$ | $\frac{1}{s+a}$ |
| $t e^{-a t}$ | $\frac{1}{(s+a)^{2}}$ |
| $\frac{t^{n-1} e^{-a t}}{(n-1)!} \quad(n=1,2,3, \ldots)$ | $\frac{1}{(s+a)^{n}}$ |


| $\sin (\omega t)$ | $\frac{\omega}{s^{2}+\omega^{2}}$ |
| :--- | :---: |
| $\cos (\omega t)$ | $\frac{s}{s^{2}+\omega^{2}}$ |
| $\sinh (\omega t)$ | $\frac{\omega}{s^{2}-\omega^{2}}$ |
| $\cosh (\omega t)$ | $\frac{s}{s^{2}-\omega^{2}}$ |
| $\frac{1-e^{-a t}}{a}$ | $\frac{1}{s(s+a)}$ |
| $\frac{e^{-a t}-e^{-b t}}{b-a}$ | $\frac{1}{(s+a)(s+b)}$ |

$$
\begin{array}{ll}
\frac{b e^{-b t}-a e^{-a t}}{b-a} & \frac{s}{(s+a)(s+b)} \\
\frac{1}{a b}\left(1+\frac{1}{a-b}\left(b e^{-a t}-a e^{-b t}\right)\right) & \frac{s}{s(s+a)(s+b)} \\
\frac{1}{a^{2}}\left(1-e^{-a t}-a t e^{-a t}\right) & \frac{1}{s(s+a)^{2}} \\
\frac{1}{a^{2}}\left(a t-1+e^{-a t}\right) & \frac{1}{s^{2}(s+a)} \\
e^{-a t} \sin (\omega t) & \frac{\omega}{(s+a)^{2}+\omega^{2}} \\
e^{-a t} \cos (\omega t) & \frac{(s+a)}{(s+a)^{2}+\omega^{2}}
\end{array}
$$

## P-1 Review of Linear Algebra

## Inner (Dot) Product of Vectors

$x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right] y=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]$ then $x \cdot y=x^{\mathrm{T}} y=\sum_{i=1}^{n} x_{i} y_{i}$

## Multiplication of Two Matrices $C=A B$

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \quad B=\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right]
$$

$$
c_{i j}=\sum_{k} a_{i k} b_{k j}
$$

## Determinant

$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$

$$
\begin{aligned}
|A|= & (-1)^{1+1} a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12}\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|+ \\
& (-1)^{1+3} a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
|A|= & a_{11}\left(a_{22} a_{33}-a_{32} a_{32}\right)-a_{12}\left(a_{11} a_{33}-a_{13} a_{31}\right)+ \\
& a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right)
\end{aligned}
$$

## Determinant

$\left.\left|\begin{array}{|lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=\left|\begin{array}{ccc}a_{11}+a_{21} & a_{12}+a_{22} & a_{13}+a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=\left|\begin{array}{lll}a_{11}+a_{12} & a_{12} & a_{13} \\ a_{21}+a_{22} & a_{22} & a_{23} \\ a_{31}+a_{32} & a_{32} & a_{33}\end{array}\right| \right\rvert\,$

Given a determinant, summing two rows and writing the result as one of those rows do not change the value of the determinant.

Similarly, summing two columns and using the result as one of those columns do not change the value of the determinant.

Eigenvalues and Eigenvectoris $\quad \lambda I-A=0$

$\left[\right.$| $A v=\lambda v$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $a_{11}$ | $a_{12}$ | $\cdots$ | $a_{1 n}$ |
| $a_{21}$ | $a_{22}$ | $\cdots$ | $a_{2 n}$ |
| $\vdots$ | $\vdots$ | $\ddots$ | $\vdots$ |
| $a_{n 1}$ | $a_{n 2}$ | $\cdots$ | $a_{n n}$ |\(]\left[\begin{array}{c}v_{1} <br>

v_{2} <br>
\vdots <br>
v_{n}\end{array}\right]=\lambda\left[$$
\begin{array}{c}v_{1} \\
v_{2} \\
\vdots \\
v_{n}\end{array}
$$\right]\)

$$
\lambda I-A=\left[\begin{array}{cccc}
\lambda-a_{11} & -a_{12} & \cdots & -a_{1 n} \\
-a_{21} & \lambda-a_{22} & \cdots & -a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
-a_{n 1} & -a_{n 2} & \cdots & \lambda-a_{n n}
\end{array}\right]
$$

## Characteristic Polynomial

$|\lambda I-A|=\lambda^{n}+\alpha_{1} \lambda^{n-1}+\cdots+\alpha_{n}=0$
Note that a polynomial is said to be monic if the coefficient of the highest order term is equal to unity

## Cayley-Hamilton Theorem

Every square matrix satisfies its characteristic polynomial

$$
A^{n}+\alpha_{1} A^{n-1}+\cdots+\alpha_{n} I=0
$$

## Kernel and Image

$A: R^{n} \rightarrow R^{m}$
$\operatorname{Ker}(A)=\operatorname{Null}(A):=\left\{x \in R^{n}: A x=0\right\}$
$\operatorname{Im}(A)=\operatorname{Range}(A):=\left\{y \in R^{m}: y=A x, x \in R^{n}\right\}$


## Kernel and Image

$A: R^{n} \rightarrow R^{m}$
$\operatorname{Ker}(A)=\operatorname{Null}(A):=\left\{x \in R^{n}: A x=0\right\}$
$\operatorname{Im}(A)=\operatorname{Range}(A):=\left\{y \in R^{m}: y=A x, x \in R^{n}\right\}$


## Linear Dependence/Independence



If a set of $\alpha_{\mathrm{j}}$ (other than all zero) yields $x=0$, then $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ set is said to be linearly dependent otherwise $x_{1 \ldots k}$ are linearly independent

