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1. Locate the open loop poles and zeros

2. Determine the loci on the real axis

3. Determine the asymptotes of root loci

4. Find the breakaway and break -In points

5. Determine the angle of departure from
mplex pole

Ival at a complex

%



Root Locus Analysis
Pole -Zero Cancellation

_N(s) NG
D(s) D'(s)(s + a)

N(s) A(s)(s+a)
D'(s)(s+-a)  B(s)

TIHGWHK)

N(s)  B(s) N(s)B(s)
D'(s)(s+a) B(s) D'(s)B(s) 1

= DO)BE)TN©)AE) - DO)BE)+N$)AE) (s +a)
D'(s)B(s) D'(s)B(s)

N(s)B(s) 1 ‘ Canceled pole of G(s)

- D'(5)B(s)+ N()A(s) (5 +) IS kept as a CL pole!



Root Locus Analysis
Pole -Zero Cancellation
An Example

R(s) Y(s)
H(s)

5] s+3
SO I R Qe rl | | (s+3) is common

K(s+1) (s+3j
(s+2Xs+4).&+3

((s+2)(s+4)+1<(s+1))(s+3) 0 > Char. Egn.

((s+2)(s+4)+K(s+1))=0 > Char. Eqgn. for root /

_ locus
Here is the
pole -zero jw

1+ KG(s)H(s) =1+ ) (s+3) terms cancel

cancellation!




Root Locus Analysis
Pole -Zero Cancellation

N(s) — N(©)

G(s) = and H(s) = A(s) _ A’(S)(S +0)

D(s) B D'(s)(s+a)

G($)H(s)  D(s)s+a) B

1'(s) 1+ G()H(s) 1 )  As)s+a)
i - D'(s)(s+0a)  B(s)
Canceled pole is not a
N(s)A'(s) closed loop pole at all
B D'(s)B(s) B N(s)A'(s)
- D'(s)B(s)+ N(s)A'(s)  D'(5)B(s)+ N(s)A'(s)
D'(s)B(s)




Root Locus Analysis
Pole -Zero Cancellation

R(s) @II H(s) lI Gls) . Y(s)

An Example (Same result is obtained!)

5] s+3
SO I R Qe rl | | (s+3) is common

K(s+1) (s+3j
(s+2Xs+4).&+3

((s+2)(s+4)+1<(s+1))(s+3) 0 > Char. Egn.

((s+2)(s+4)+K(s+1))=0 > Char. Eqgn. for root /

_ locus
Here is the
pole -zero jw

1+ KG(s)H(s) =1+ ) (s+3) terms cancel

cancellation!




Y(s)

Canceled pole is NOT a CL pole /




__] Modify the system dynamics suita
the desired result, which means

and the device you used Is called //




Design based on Root Locus
Description of the Compensation Problem

_]C(s) may remove some poles of G(s) and may
add new poles, or C(s) may remove some zeros
of G(s) and may add new zeros to change the/

shape of root locus.

] Once the shape of root locus becomes suitab
to locate the desired closed loop poles,
adjustment of loop gain K is performed



After some value of K, tw
< of the CL poles are uns




1

-1 ' '

Notice that, the CL poles are always stable or
this example . Adding zeros increase the st
of the CL system, this is due to the antieipatory

behavior of the derivative action .






G(s)

- s(s+2)

C(s)

Compensator




SfSg-210

From zerc
(No zeros!)  (Two pole




Keeping this angle

at 30 will let us

-Z

0

Clearly, there are lots of configurations providing 30
angle contribution? Which one should we choose?






Design based on Root Locus
Lead Compensation - An Example
Determine K from the Magnitude Condition

CHGS) ;s g5 =1

|Ks+2.9 4

s+54 S(S T 2)|52+j2‘/§ )

Uncoimpensated
Compensated

K =47, C(s)= 472722 i
S+ 54 Time .(sec)




Design based on Root Locus
Lead Compensation - An Example
Static Velocity Error Constant

Step Input | Ramp Input | Acceleration Input
r(t)=1

K, = lim sC(s)G(s)
s—0

= lims(4.7s+2'9) i
s—0 s+54 )\ s(s+2)

~5.02sec.




Design based on Root Locus
Lead Compensation
More general case:

K, = hm sC(s)G(s) = lim S(K 1 ](
—0 s—0 S+ p

543

¢, —0,=30"= arctan(

|Ks+z 4 |
S+ p s(s+2) =21 1243

Angle Condition

Solve the three equations for




this
several specifications
the transient or steady state chara
described and you find out the
poles .

required C

the root loci and make sure that you are on
right way .

_ ] Before jumping into equations, roughly Sketch/
t







Typically, a desired static error constant Is
given . Since the angle contribution of the lag
compensator Is very small, the root loci does
10 hange significantly . If this is not the
' ansient response IS not
Il be using a

)




N 1.06
7 s(s+ D(s+2)

O 1.06
s(s+1)(s+2)







Design based on Root Locus
Lag Compensation - An Example

>
Compensator Plant




Design based on Root Locus
Lag Compensation - An Example

G(s) = LU K, =lmsG(s)=0.53
s(s+1D(s+2) s—0

S+ Z 1.06

COG =K DD

Kew = lim sC(5)G(s) = K%O.53

A Kw/K @O0, so set z=0.05 and p=0.005

Cal cul ate angle co b |
A This will slight!| chan
A Tune K zsamek 2=6.491), K=1.0235



Design, R -Locus
Lag Comp. Example

A What would hap
were no K adjustment?




Blue: Compensated,

P ——

40
30}f-=---

asuodsay welsAg

20}-----
D------
0

Time (sec)

Time (sec)

- asuodsay wWelsAsg

5
1
5t
0

Time (sec)

Time (sec)







O Firstly,
O Calculate the angle
O Locate the zero of the compensator
O Locate the pole such that the angle
condition is met
O Secondly, design the Lag Compensator
O Locate its pole close to zero /
O According to steady state response  specs.,
locate the zero
O Check the angle contribution of Lag Comp.
© If necessary, retune the gain so that
kept at its desired value.

IS



Design based on Root Locus
Lag-Lead Compensation - An Example

A Dominant CL poles are
to have z=0.5

A Desired Undamped na
IS w, = 5 rad/sec

A Desired Statiec
Is K, =80 sec -1

\Y



Design based on Root Locus
Lag-Lead Compensation - An Example

4

ol s(s+0.5)

Gs) 4
1+G(s) s°+0.55+4

I'(s)=

=0.125 and ®, =2rad/sec

‘¥
K, =limsG(s)=8sec”

s—0




Design based on Root Locus
Lag-Lead Compensation - An Example

—fw, =-0.5%5=-2.5

Jjo, =j1—c2m,,, = j4.3301

_—
(] 4. 3301

Now Calculate the
angle deficiency

<1 =S €

Lead Controller will contribute

5 4 .t@make sure that

()
\_/

S£S q°¢2k+1) 180



Design based on Root Locus

\/

Lag-Lead Compensation - An Example
Si=
® 4. 3 3 (

quead
51pL§‘°id-- 109.11
' B -

-25 -0.5

Q21 ead- quead =54.8 l

s+1

K —
il 5 +5.61 s(s+0.5)

4

=1=>K, =694




Design based on Root Locus
Lag-Lead Compensation - An Example

C ()G —(694 ol jL
eaa ($)G(5) =| 6. s+5.61 ){ s(s+0.5)

K

v(new)

=limsC;,,(5)G(s) = 9.9 sec”

When s=0, the L ag compensator must
Increase the loop gain by 1/0.124 =



Design based on Root Locus
Lag-Lead Compensation - An Example

s+0.1
“5+0.0124

- \C. ()G )—(694 s+1 )(K s+0.1 j 4
tead ()C1ag ()G (8) =| 6.94 ==~ | Kype 005 s(s+0.5)

Clag (5)=K,

lag

K, =limsC,,,(5)Cyu (5)G() = K;,, 79.8114 sec”

Angle Contribution 1s: 0.8791°




Design based on Root Locus
Lag-Lead Compensation - An Example

(s+1)(s+0.1)

() =694 s (5 30.0124)

Now, test and see whether the design
specifications are met or not...



Design based on Root Locus
Lag-Lead Compensation - An Example
Step and Ramp Responses

N

—
n

e
o

()}
w
C —_—
(@] (0]
O C
@ >
r ! ‘g
£ =
- LL
4
%

20 | ) | 20
Time (sec) Time (sec)

=
o

w
o

System Response
Error Signal

o

10 20 30 e | 20
Time (sec) Time (sec)

o




K, =79.81139669944224 sec !
Z = 0.49452458450471

Kiag = 80/79.81139669944224=1.0C

CL Poles: s= -2.44966485404744  ° j4.31279190736033

Ss=-1.12228732098688 and s=  -0.10078297091824
y /4

Kiag = 0.97999709075950 y/ /

CL Poles: s= -2.44773023820451 ° j4.239%59313579281
s=-1.12613839738740 and s=  -0.10080112620358




Manipulating the roots and the poles of the
closed loop system may yield the desired
solution, which can be sought by root locus

method.

Ign specs. carry priority. Meeting
Ire computer based







Frequency Response Analysis

Bode Plots - First Order Factors

i ‘Hﬂll!‘m J | H’H'hl]l .HIHH‘ IH‘HH
IR TTVIN 'HIHH T H‘”“’IH N ”'H”W f | |

0.5000
0.4774

Time (sec)




M’ @ (M’ @D (D

num = 1;

den = [ 1 2] ;

w = 2*pi1 *[ 0. 01

[ Magni tude, Ph a sk
Magni tude'

Frequency Response Analysis
Bode Plots - First Order Factors
Some Matlab Work




Frequency Response Analysis
Bode Plots - First Order Factors - An Example

16(s +2)(s+10) _ (s/2+1)(s/10+1)
s(s+40)(s+100)  s(s/40+1)(s/100+1)

(1+0.5s5)(1+0.1s)
s(1+0.0255)(1+0.01s)

(I+ jO.5®)(1+ jO.lw)
jo(1+ j0.025m)(1+ j0.01w)
1+ j0.50|1+ j0.10)
joll+ j0.0250[1+ j0.01n
Z/G(jo) = arctan(0.5m) + arctan(0.1m) — 90
—arctan(0.025w) — arctan(0.01w)

G(s) =

((s)=10.08

G(jo)=0.08

G(jw)| = 0.08‘




Phase (deg), Magnitude (dB)

Freguency Response Analysis
Bode Plots - First Order Factors - An Example

Bode Diagrams

From: U(1)

Normally, we do
S— not mark these

poles and zeros! %

16(s+2)(s+10)
s(s+40)(s+100)

AN\ N

G(s)=

10° 10

Frequency (rad/sec)



] Then Sweep the frequency axis. If G(s
( ) at zero, start with a curve of
slope ( ) dB/decade.

/

] Continue sweeping: At every ( )
( ) the slope 20m dB/decade,

where m is the multiplicity of that pole (zero).



Frequency Response Analysis
Bode Plots Quadratic Factors

s T o)

G(s)=

G(J'co)—l+2c( j{] ] ( 2j+2c( (Dj

20logG(joo)| = —ZOIOg[\/(I j (2@ j]

ZG(jo) = —arctan




Poles are on the imagin

] O<z<1 Sever al situatioy



Frequency Response Analysis
Bode Plots - Quadratic Factors

0 dB

®
G _—"
(5)= s+ 20,5+ o

Ut =—®n(CiC -1)



Frequency Response Analysis
Bode Plots - Quadratic Factors

\

G(s)=—

s +2m 5+

G(jo)= ;z
=

n




Frequency Response Analysis
Bode Plots - Quadratic Factors

0dB-
N\




Frequency Response Analysis
Bode Plots - Quadratic Factors -

—

®, =o,y1-2 for 0<(<1/42

If{>1/ V2 There is no resonant peak




Transfer functions having neither poles nor
on the right half s -plane are




Frequency Response Analysis
Minimum -Phase/Nonminimum -Phase Systems

®° + z°

G(jo)| =

® +p°
ZG(jo)
arctan(m/2) — arctan()
arctan(®/2) + arctan( )

— (arctan(oa/Z) + arctan(co))
— (arctan(O)/Z) — arctan(co))




Frequency Response Analysis
Minimum -Phase/Nonminimum -Phase Systems

2 | ] 5 /
) Freguency - Frequency /



Frequency Response Analysis
Transport Lag (Delay)

G(s)=e ™
G(jo)=e " =cos(al) - jsin(aT)
G(jw)=1

180

ZG(jo)=-uT (radians) or — TmT (degrees)




Frequency Response Analysis
Transport Lag - An Example

e~ JoL

Ol =13 T

2010g|G(jo)| = 20 logle_j(”L | —20log[l + joT|

=-20log|l + joT|

ZG(jo) =—-wlL —arctan(w?’)




Frequency Response Analysis
Gain Margin and Phase Margin

G(s)

AR

G(s)  KG'(s)
1+G(s) 1+KG'(s)

1(s)=

I oy~ _GU®)___KG'(jo)
1+G(jo) 1+KG'(jo)

] When holds true, the closed loop system is
at the verge of instabillity. /
| Atafrequency, say w,, G i & megative real numbe /
I G gw(;)=180 . Then w, is called equency
The gain making IS the critical gg'w{/wﬁich
IS the calculated as ),

/



Increasing the gain K




Frequency Response Analysis
Gain Margin and Phase Margin




Frequency Response Analysis
Gain Margin and Phase Margin




o /l/
/
/ =
@
.
K=
uR\Nw——

e

System is stable System is u
You can multiply the current You have to divide the cgfreft
loop gain at most by K

loop gain at least by K
s

g




Can | find the same upper limit of gain by using
Routh criterion?

YES...
g So, Why dondét we use iit?




10

Phase (deg); Magnitude (dB)

Gm=9.5424 dB (at 3.3166 rad/sec), Pm=90 deg. (at 1 rad/sec)

10°

Frequency (rad/sec)

3—8

G'(s) =
(5) s2+35+2

: G(s)= KG'(s)

T(S) _ (J(_S)

1+ G(s)
—2/3< K <3 (Routh Cr.)
GM =20log3 =9.5424

1t PM =90° at 1 rad/sec




Frequency Response Analysis
Polar Plots - A Simple Example







—i




There may be more
han, one phase or gain el

Crossover frequencies.
We will restrict [« - A

pUISeles o the,Cases -
lluStrated-here. (-

i




Imaginary Axis

Nyquist Diagram

1: L C C L C
0.8 - |
0.6 - “ |
—
0.4 - / -
System: sys
02| Real: -0.75 |
' Imag: -0.00343
Frequency (rad/sec): -0.0177
0t [ |
-0.2 o
-0.4 -
-0.6 g
0.5s- 1.5 T(9) = KGO
s2 +35+2 ()
1 C r r r r r r
-1 -0.8 -0.6 -0.4 -0.2 0.2

Real Axis

0.4




Imaginary Axis

Nyquist Diagram

1¢ C C C [ C
0.8 - ,
0.6 —~ ,
0.4 o
System: sys
0o Real-1 |
", Imag: -0.00973
Frequency (rad/sec): -0.0149
q | .
-0.2 - o
-0.4 - .
-0.6 - o
-0.8 - o
-1 C r r r r r
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

Real Axis



H(s)

1+G(s)H(s)=0 is the characteristic equation. Nyquist
stability criterion lets us know /

by using
an

Let 0s see the details. ..



¥ \Why are we interestedin the point -1+j0 ?

Because the de
G(s)
1+G(s)H(s)

HOE

iIs equal to zero when G(s)H(s)= -1=-1+j0. /
Let s=jw, and obtain the polar plot of

G(w)H(w) while running w from 0O to o,
Intuitively, we can say that the closed loop
poles should somehow be related to the
deployment of the geometric place of
G(w)H(jw) curve according to point



¥ \What is encirclement?

No 2r«wiederment! No anci/m}enmnt



¥ \What is encirclement?

v g

L]
L]
Ll
L2
LA
L
A
A
4
..
o /
*
*>
”
*
/

o

2 clociveise endreicments! 2 clocineise ?circi-ements!




¥ Let 6s . see the mapping be:t
clockwise - contour in's —-plane and the curve
it-corresponds: in G(Jw)H(jw) plane.

Since the radius'is -~ &, the
Interior of this closed
contour eontains ever
unstable zero,or pole:ofthe - -
epen loop transferfunction: '+,
5(S)H(s); and 'we 'can-use - -
the-theorems, of complex -

mathematics<arour goals.



¥ G(S)H(s)=1/(s+1), clearly
G(w)Hw)=1/jw+1)

Not2 thal sve bave not tand anvtaung il .'si}'diility yet!
All wee e dadng naosy s G g vaé Chrldeizsikddence.



¥ G(S)H(s)=1/(s '« -1), clearly
G(jw)H(w)=1/Gw -1)

Not2 thal sve bave not tand anvtaung il .'si}'diility yet!
All wee e dadng naosy s G g vaé Chrldeizsikddence.



¥ G(s)H(s)=1Hs(s  +1)}, clearly
G(wW)Hgw)=14jw(w+1)}

You cannot choose this
contour any more!. The
contour passes through
singularity (There is-a - -
pole-at s=0)1) f

Datolr ol i\ by

acfing & sernlGitinie

inﬁni‘l%ima?' S :!



¥ G(s)H(s)=1Hs(s  +1)}, clearly
G(wW)Hgw)=14jw(w+1)}

[Detour around |t Dy




G(s)H(s) 1/{s(s  +1)}, clearly
V)=1w(w+1)}




G(s)H(s) 1/{s(s _ +1)}, clearly

ss+) - je(- je+])
-1 . 1

= +
e’ +1 : 6'6'2 +1




ss+)  je(je+l)
-1 . 1

241 J 6’6’2 +1




G(S)H(s)=1/s(s = +1)}, ¢
GW)H(wW)=1Ajw(w+1)} - .




¥ G(s)H(s)=1Hs(s  +1)}, clearly
G(jwW)HGw)=1/4jw(jw+1)}

l Infinity radius semicircle from the = proseeeess -}
s-plane is mapped to the origin of
GH-plane



¥ G(s)H(s)=1Hs(s  +1)}, clearly
G(jwW)HGw)=1/4jw(jw+1)}

| Infinitesimal semicircle of radius e - ]
from the s-plane is mapped as an
infinity radius semicircle in GH-plane



¥ G(S)H(s)=1Hs(s  2+4)}, clearly
G(w)H (w)=1Hjw( -W2+4)}

Il around every
W axisipole by:)';
adding:a-Semicire

sle
ofdnfinitestimah -1 /
Oek e adilsel

IHENESH ISLHE
SE]1C-P.




¥ Choose the clockwise contour in s -plane,
such that the right half. s = -plane is contained
entirely.

sulate -Gw)H(w) along this contour.
Consider criticakpaints first and choase
Some-ntermediate points,;Use ofia .
CoMpUterimay: be evitable.l <5

Conslitbet Breci s delindong cuve 1h GH-
oW R, Foy eehipliian it inotation
(CIOCKWISETOL . CA U TIET ClOCKIAIS R =) B

NOWAMWE"SEFE a0 ORI e NV LIST [STak li‘.tab@e riterion



H(s)

1+G(s)H(s)=0 is the characteristic equation. Nyquist
stability criterion lets us know

by using
an



H(s

1+G(s)H(s)=0 is the characteristic equation. Nyquist
stability criterion lets us know

[
+



H(s)

Stable closed loop means Z=0. Obviously this means N= -P
The number of right half s -plane poles of G(s)H(s) must be
equal to the number of encirclements
the point -1+0.

[
+



3% G(S)H(s)=K/s 2 clearly
G(JW)H(JW): - Kiw, 2
1+G(SIH(s)={S  2+Kl/s/ ¢

e

Locus passes through -1+j0 point, i.e. the closed loop

poles are located on the jw axis, S2HHEO0 !



¥ G(s)H(s)=K/s(s  -1), clearly

el

No matter what K is, locus encircles -1+j0 point one

times in the clockwise direction, so



¥ G(sS)H(s)=K/s(s (-1), P=1, N=1

loop poles lie on the right half s

2.5+
1+G(s)H(s)= K g

s(s-1)
Zeros of the char. egn. Have real parts
equal to 1/2, i.e. on the right half s -pla

You could check the CL stability by usi
the Routh test as well. See the root locus..



