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Abstract
Expression genomics can be defined as the study of the dynamic transciptome and its

regulatory elements. Technologies are available that can assess transcripts on a genome-wide

scale over time and across many samples. This comprehensive and dynamic database is being

used to decipher signalling pathways and to identify new biomarkers and targets. Biomarkers

emerging from these studies have prognostic potential and can be used to predict therapeutic

outcome. The multiplex nature of this approach not only telescopes the time to discovery, but

also allows for detection of complex interactions. Taken together, these capabilities, if carefully

used, can speed drug development, enhance the identification of potent drug combinations and

identify patient populations that will benefit from these new drugs.

INTRODUCTION
The enabling pharmacology that

underpins modern drug development

relies on the understanding of the

biochemical and genetic components of a

cellular state and how to manipulate this

state. Biochemistry brought molecular

precision to the process, but the

complexity of the configurations

associated with disease ultimately limited

the usefulness of this one-gene/protein-

at-a-time approach: it is too slow and

provides insufficient information to cover

all the interlocking mechanisms pertinent

to a disease process or a pharmacological

response. The emergence of mega-

throughput sequencing capabilities,

computational tools to visualise and

analyse this massive body of information

and the complete sequencing of the entire

human genome and much of the

transcriptome provided the final pieces

that made genomics a fundamental

platform in pharmacology and in drug

development. This genomic approach is

characterised by the comprehensive and

complete assessment of genetic descriptors

associated with specific cellular states. In

this regard, the dynamic aspect of the

genome, the expressed genetic elements,

is among the most important determinant

of pharmacological output and is

therefore an important genomic read-out

in pharmaceutical development.

Surprisingly, concepts arising from

recent work on a remote topic have had

some influence on current thinking in

human pharmacology and, perhaps, in

drug development. Davidson and

colleagues, after identifying the critical

genetic components for developmental

specification for endomesodermal

differentiation in the sea urchin, pursued

large-scale perturbation analysis

integrating gene knockdown

technologies, cis-regulatory analysis and

classical developmental biology.1 From

this analysis, they defined the genetic

network for endomesodermal

specification on a genomic scale.2,3 Their

ability to frame the network as a precise

functional model in a control diagram

makes feasible the hypothetical concept of

forward engineering of a complex

biological process. This became the focal

point for systems biology. When applied

to pharmacology, this means that

computational predictions for

physiological outcomes after a

pharmacological challenge may be
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achievable. This concept of systems

biology has been embraced by some

pharmaceutical companies and integrated

into their organisational structure (eg

integrated biology and systems biology

groups at Eli Lilly). Fundamental to this

approach is a focus on the dynamic nature

of the transcriptome and the function of

its protein products. For dynamic

processes such as cell biology and

pharmacology, the transcripts associated

with a condition represent the most

important genomic determinants of

biological outcome.

The focus of this paper, therefore, is

the analysis of the transcriptome relevant

to drug development. Although genetic

mutations and polymorphisms are also

important in the pharmacological

framework, these topics have been

reviewed previously and will be only

mentioned briefly.4 Specifically, the area

that will not be covered here will be the

pharmacogenomics of drug metabolism,

where polymorphisms of metabolising

enzymes alter individual processing of

therapeutic agents.

THE TECHNOLOGIES
The interrogation of the transcriptome,

which is the centrepiece of expression

genomics and is the focus of this paper,

has been enabled by a number of

technologies. Expressed sequence tags

(ESTs), full-length cDNAs (FLcDNA),

serial analysis of gene expression (SAGE),

massively parallel signature sequencing

(MPSS), expression arrays and chromatin

immunoprecipitation (ChIP) are among

the technologies developed for this

purpose.

Expression genomics, as assessed by

microarrays, is both powerful and

limiting. The nature of this technology

has been well described5,6 and previously

reviewed.7–9 Its utility is in the massively

parallel nature of the gene expression

analysis and the ability to assess many

samples for comparison. The resultant

expression footprints are akin to signatures

of cellular states and can be used to

distinguish between subtle differences. It

demonstrated a hierarchy of

transcriptional impact, with cell lineage

making a greater impact than biochemical

pathways, and, in turn, greater than

individual gene effects. Arrays can discern

disease classes that standard clinical assays

and assessments cannot, and the

expression profiles can serve as a sensitive

and specific measure of pharmacodynamic

response (see below). Surprisingly, the

complexity of the data with the

simultaneous measurement of thousands

of genes, when viewed at a helicopter

level, is remarkably robust and is

reproducible across cellular systems and

array platforms (Box 1).

FLcDNA cloning and sequencing (such

as is represented in the Cancer Genome

Anatomy Project (CGAP; http://

cgap.nci.nih.gov/) is perhaps the most

precise in gene annotation and most

complete in transcript discovery, but is

too costly and slow for use in answering

cell biology questions.10

Transcript tagging technologies are

surrogates for FLcDNA cloning and

sequencing. SAGE and MPSS can detect

new transcripts in an unbiased manner.

SAGE was a technology designed digitally

to quantify expression of genes designated

by short sequence tags representing

cDNAs. SAGE, unlike microarrays, can

assess the expression of unknown or

unexpected genes and therefore can be

used for gene discovery. The basis of this

technology is to render each cDNA into a

representative short 14–21 base pair (bp)

tag, which can be concatemerised for ease

of sequencing. MPSS couples a SAGE-

like approach with a novel restriction–

ligation bar code identification and a

bead-based detection system to identify

17–20 bp tags of transcripts in any

sample.11 SAGE and MPSS can assess

transcript diversity deeply by sequencing

many tags, but has significant ‘noise’ in

the data output: �30–40 per cent of tags

cannot be mapped to a single genomic

location. Moreover, these approaches do

not assess transcript processing/splicing,

and are sufficiently cumbersome to

preclude widespread use. Thus, they are

Current technologies
that interrogate the
transcriptome and its
regulation on a
genome-wide scale
include EST and full
length cDNA
sequencing, SAGE,
MPSS, microarrays and
chromatin
immunoprecipitation
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less useful when applied to cell biological

or clinical experiments, where analysis of

many individual samples is required.

Recently, new technologies have been

developed to overcome the limitations in

the completeness and speed of discovery

of the dynamic transcriptome. Tiling

arrays, whereby every nucleotide in the

genome is covered, have been used to

assess all possible transcribed sequences.12

The results show that much more of the

genome is transcribed than was previously

imagined. Moreover, the dynamic

binding of transcription factors to the

genome can be comprehensively assessed

using these tiled arrays in chromatin

immunoprecipitation onto chip

experiments.13 Again, the surprise is how

often transcription factors bind in places

that we did not expect. Specific exon-

junction arrays covering more than

10,000 multi-exon genes have revealed

significant splice heterogeneity across

tissues and cell lines.14 It was estimated

New technologies
combine components of
earlier approaches, like
chromatin
immunoprecitation-
tiled assays, or full
length cDNA synthesis-
SAGE

Technologies in expression genomics

Sequencing-based

Expressed sequence tag: Single-pass sequence of cDNA clones, primarily assessing the 39 region: 300–800

base pairs (bp) per tag.

Full-length cDNA library: Full-length cDNA clones are enriched and the complete sequence of each clone

determined. This is the gold standard for transcriptome technologies, in that all aspects of a transcript can be

ascertained through this one approach.

Serial analysis of gene expression) (SAGE) and long SAGE: Short tag sequences (14 bp or 21 bp tags per

transcript) are extracted, concatenated, cloned and sequenced. This covers 30–50 tags per sequence read. The

14 bp tags are representative of individual transcripts, although significant ambiguities of gene assignment are

found. The long SAGE tags encompass up to 21 bp tags and are sufficiently specific to be mapped directly to

genome sequences. Coupling 59 long SAGE and 39 long SAGE approaches in a single sample allows for the

computational reconstruction of the start and end of every transcript. These technologies can only assess gene

expression, but in an unbiased fashion.

Massively parallel signature sequencing: The 39 sequences of individual cDNA clones are ligated to short

signature tag sequences (17–20 bp tags per transcript) linked in vitro onto individual and addressable microbeads.

Parallel sequencing is conducted by a hybridization–ligation-based approach, using fluorescently labeled probes

for the individual nucleotides. The depth of sequence information that can be extracted from any one library is

significantly greater than the output from a SAGE library.

Microarray-based

Deposition microarrays: Oligonucleotides or polymerase chain reaction (PCR) products from cDNA clones

are spotted onto glass slides using robotic dispensers. Each spot contains a specific probe for a gene, and the data

output provides only the levels of expression of individual putative transcripts and can only assess which genes

are represented on the array. The advantage is the robustness and low cost of the system.

In situ DNA oligonucleotide synthesised microarrays: In situ synthesised oligonucleotide microarrays

employ the photolithographic synthesis of oligonucleotide probes directly on the chip (eg Affymetrix; http://

www.affymetrix.com/technology/index.affx). The advantages of this technology are the density of the arrays

and the economies of scale.

PCR-based

Chromatin immunoprecipitation: A transcription factor is chemically cross-linked to its bound genomic

DNA fragment. The DNA is sheared and the transcription factor–DNA complex is immunoprecipitated with

the protein-specific antibody, and enrichment of the bound fragments is detected by quantitative PCR. This

technology allows for the direct assessment of binding sites of transcription factors. When coupled with cloning/

sequencing or tiled array approaches, the binding sites of any transcription factor can be mapped on a whole-

genome scale.

Box 1: Technologies in expression genomics
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that 74 per cent of multi-exon human

genes are spliced. Wei et al.15 coupled a

59-long SAGE and a 39-long SAGE

technology to annotate completely the

putative start and ends of every transcript.

This is a significant boost to FLcDNA

library production and clone sequencing

because of the speed of sequencing in a

SAGE format. It is also an improvement

over 39-directed SAGE approaches

because of the increased information

content from the 59 annotation.

With these new technologies, the full

identification of the dynamic

transcriptome can be realised.

EXPRESSION GENOMICS
AND DRUG DISCOVERY
The drug discovery process involves

target identification; target validation; lead

identification and optimisation; and

preclinical studies and toxicology, leading

to clinical trials. Genomic approaches

have been used at each stage of this

pipeline to significant advantage.

Finding the target, uncovering
pathways: Somatic mutations
Since cancer can be propelled by

activating mutations in signalling

molecules, early strategies identified

specific somatic mutations amenable to

targeting by small molecule therapeutics.

Cytogenetic rearrangements directed the

first successful example of a therapeutic

targeted to an oncogene. The BCR–ABL

translocation in chronic myelogenous

leukaemia activates the ABL kinase by the

generation of a chimeric protein. Gleevec

was synthesised as a small molecular

inhibitor of the ABL kinase, and proved

to be remarkably effective.16 Point

mutations were previously more difficult

to assess but also identified markers for

therapeutic response or yielded potential

targets. One of the first examples was the

analysis of RAS mutations (N-RAS, H-

RAS and K-RAS). Most studies in

epithelial cancers found no association

between activating RAS mutations and

response to therapy; however, fortuitous

observations in acute myelogenous

leukaemias (AMLs) suggested that

aberrations in RAS rendered AMLs more

sensitive to dose-intensive cytosine

arabinoside,17 findings supported by in

vitro studies.18,19 The observation that

mutations in the receptor tyrosine kinase,

FLT3, are common in AML (25–30 per

cent) and are associated with poor

prognosis20 led to the development of

specific anti-FLT inhibitors with

therapeutic effect.21,22

Transforming growth factor-beta

(TGFbeta) is a growth-suppressing ligand

for its cognate receptor, TGFbetaRII, and

abrogation of TGFbeta signalling is

thought to be involved in epithelial

carcinogenesis. It has been observed that a

dinucleotide repeat in the coding region

of TGFbetaRII is susceptible to mutations

in colon cancer patients exhibiting the

microsatellite instability phenotype first

found in hereditary non-polyposis coli.23

These mutations inevitably generated

termination codons, rendering the

receptor inactive. Thus, even without

application of genomic approaches,

mutations in key signalling genes have

pointed to genes and pathways amenable

to drug targeting. The strategy, however,

involved a gene-by-gene analysis which

was reliant on chance findings.

Recently, more genomic approaches

have been successfully applied to target

discovery in cancer. Characteristic of this

approach has been the surveying of entire

classes of molecules across a large number

of samples in an attempt to discover

genetic variances. Significant advances in

sequencing technologies that enable large-

scale sequencing at low cost have

encouraged several groups to embark on

exon sequencing of candidate signalling

genes. Davies et al. from the Sanger

Institute sequenced the codon domains of

RAS, RAF, MEK and the mitogen-

activated protein (MAP) kinase pathway

in a large number (.500) of cell lines.24

This was the initiating effort in a larger

programme to sequence the exons of all

known genes in cancer cell lines. These

authors found somatic missense mutations

in the serine kinase, BRAF, in malignant

Specific somatic
mutations in tumours
function as targets for
therapeutics or
predictors of treatment
response

Activating BRAF
mutations are found in
malignant melanomas
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melanomas and confirmed that 66 per

cent of primary malignant melanomas

harboured activating mutations in the

kinase domain, with a single substitution

(V599E) accounting for 80 per cent. This

has led to the development of BRAF-

specific inhibitors in cancer therapy.25

A similar strategy has been pursued in

the analysis of protein kinases in cancers.

The importance of these candidate targets

has been primarily based on the clinical

effectiveness of anti-HER-2 and

epidermal growth factor receptor (EGFR)

therapy. The original focus on these anti-

kinase drugs was based on the

overexpression of HER-2/ERBB2 and

EGFR in primary cancers, but, again, the

advances in sequencing technologies now

allow for large-scale interrogation of

mutations in tumours. The results have

been striking. Paez et al. examined

sequence aberrations in EGFR in human

lung cancers and found that an activating

mutation is seen in about 21 per cent of

adenocarcinomas.26 These mutations in

the kinase domain were surprisingly high

in adenocarcinomas of the lung from

Japanese women when compared with

Caucasians (32 per cent vs 3 per cent).

Intriguingly, these mutations appeared to

confer a better response to gefitinib, an

anti-EGFR small molecule.26,27 The

Sanger Institute group further extended

this sequencing strategy to the HER-2/

ERBB2 gene in lung cancers and found

that 10 per cent of adenocarcinomas and 4

per cent of non-small cell carcinomas of

the lung had mutations in the kinase

domain.28 Anti-HER-2/ERBB2

therapeutic antibodies have been

ineffective in treating lung cancer, but

these target the overexpressed form of the

receptor. These results suggest that small

molecule inhibitors for HER-2 should be

clinically re-evaluated in the specific

subset of lung cancer patients whose

tumours harbour HER-2/ERBB2

mutations. Intriguingly, several

pharmaceutical companies have mixed

kinase inhibitors directed at both EGFR

and HER-2/ERBB2. Sequence

observations in lung cancer suggest that

dual kinase inhibition might have a

particularly effective role in

adenocarcinoma of the lung.

Underscoring the importance of

tyrosine kinase activation in human

cancers, Wang et al. scanned epithelial

cancers for mutations in six protein

tyrosine phosphatases (PTPs) and found

that 26 per cent of colorectal cancers have

mutations in at least one of these PTPs,

with a large number being inactivating or

attenuating mutations.29 Whereas protein

tyrosine kinases (PTKs) activate pathways

through phosphorylating protein

substrates in tyrosine residues, PTPs

remove these phosphates and therefore act

negatively to regulate downstream kinase

effects. Inactivating mutations in the PTPs

would lead to augmented PTK action in

the cancer cells.

Thus, in these examples, genomic

approaches have dramatically increased

the discovery rate of potential new targets

for cancer therapies by screening the

coding exons of ‘druggable’ targets such as

protein kinases.

Finding the target, uncovering
pathways: Transcriptional
footprints
Mutational analysis is a specific strategy,

for identifying a specific target molecule

(eg FLT3 or BRAF mutations) for

therapeutic intervention; however, the

pathways involved are inferred. Analysis

of the transcripts has also identified

specific protein targets. Recall that the

original development of anti-HER-2/

ERBB2 and EGFR inhibitors was based

on the overexpression of these proto-

oncogenes, which was sometimes coupled

with amplification in primary tumours.

The multiplexed analytical approaches

provided by expression microarrays,

however, allow for a more sensitive

sensor of pathway activity. Although not

all biochemical pathways are regulated

transcriptionally, genome-wide

expression profiling has been successful in

deciphering many pathway interactions

and in uncovering new pathways

associated with biological processes.

Activating mutations in
EGFR predict for
response to anti-EGFR
small molecule therapy

Transcriptional profiling
provides a footprint of
many biochemical
pathways
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Again, work in lower organisms

provided the proof of principle that on-

target/off-target determination can be

assessed with surprising precision. Hughes

et al.30 used Saccharomyces cerevisiae as the

test organism and a whole genome

expression array as the read-out in testing

the expression footprint of yeast strains

after chemical challenge. These challenges

were therapeutic molecules, many of

which had no primary applications in

microbial conditions. Nevertheless, what

was found was that therapeutic molecules

affecting specific targets would exhibit

little transcriptional change when the

target was deleted. Molecules with non-

specific effects would register alterations

in the expression cassette.

Miller et al.,31 while studying the

transcriptional response of rat pituitary

cells to thyroid hormone (T3), uncovered

an unexpected link to cancer biology. A

time course analysis after T3 exposure

revealed a coordinated inhibition of the

wnt pathway: downregulation of

disheveled, T cell factor (TCF) and beta-

catenin, and upregulation of axin and

adenomatous polyposis coli (APC ). This

was confirmed by the disappearance of

beta-catenin protein levels in T3-treated

cells. Conversely, we would expect that

the inhibition of T3 signalling would

result in a net upregulation of wnt

signalling. In fact, v-erbA, a retroviral

oncogene encodes the truncated and

inactive form of the thyroid hormone

receptor that functions as a dominant

negative mutant. Based on the array

investigation, the net result of v-erbA

expression would be to augment wnt

signalling, which is oncogenic.

One of the more effective means of

using expression arrays to dissect specific

pathways is to challenge cells

experimentally and assess changes over

time, or to compare two isogenic cell

lines that differ by a gene disruption. This

is especially useful when both conditions

are employed. Guo et al.32 assessed the

serum response of wild-type myc and

myc-null cells and found predominant

induction of genes involved in protein

synthesis. This was consistent with

observations that one of the primary roles

of myc is to regulate cell size and augment

protein synthesis.33 Aprelikova et al.,34

using BRCA1 wild-type and knockout

cells, uncovered a mechanism whereby

BRCA1 and p53 specifically regulate the

expression of the stress response gene, 14-

3-3�. Kho et al.35 used a 19,000 genetic

element array to uncover approximately

230 genes that were p53 dependent,

responsive to 5-fluorouracil exposure and

were associated with cell death. Further

investigation revealed that some of the

genes repressed by p53, polo-like kinase

(PLK) and pituitary transforming gene-1

(PTTG1), have a significant role in cell

survival after genotoxic stress.

On occasion, this approach yields

potentially new markers for medical

applications. The engagement of surface

receptor tyrosine kinases activates

phosphoinositide-3-kinase and one of its

downstream effectors, AKT protein

kinase B, which in turn can activate

molecular targets of rapamycin (mTOR).

mTOR is a key signalling node involved

in the initiation of protein synthesis via

the ribosomal protein S6 kinase and

eukaryotic initiation factor 4E-binding

protein pathways, transcription and

protein stability. Majumder et al.36 used

transgenic mice expressing AKT1 in the

prostate gland (AKT1-Tg) to show that

pharmacological inhibition of mTOR

effectively inhibits the development of

prostatic intraepithelial neoplasia. They

analysed the expression cassette of the

AKT1-Tg prostate glands before and after

mTOR inhibition and found that HIF-1a

and many of its downstream targets —

including glycolytic enzymes and the

glucose transport gene GLUT1 — were

upregulated by AKT and downregulated

after exposure to an mTOR inhibitor.

Since a common cancer imaging approach

is positron emission tomography using

[18F] fluorodeoxyglucose (FDG), it is

speculated that FDG uptake can be an

effective clinical measure of the

pharmacodynamic efficacy of therapeutic

mTOR inhibitors.

Expression assays can
be used for gene
discovery in cancer
biology or to identify
class distinctions
amongst tumours

Expression signatures
can give an indication of
the hierarchy of impact
of a cellular process or a
drug is on or off target
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Even in the absence of widespread

expression differences, expression arrays

can uncover important truths. Chen et

al.37 examined seven pairs of androgen-

sensitive and -resistant xenograft tumours

and asked if there are expression

differences that could explain the

emergence of androgen resistance. Of the

12,559 gene probes, they found that only

one gene in their array was consistently

altered in the resistant tumours: increased

expression of the androgen receptor.

Subsequent biochemical and biological

experiments confirmed this to be the

primary mechanism for androgen

resistance.

In studying the biology of other

nuclear hormone receptors, microarray

analysis has enabled unique observations

to be made. Some of these observations

are pertinent to the discovery of new

drugs. Focusing on oestrogen receptor

(ER) biology, several groups have

identified the universe of genes induced

or repressed by oestrogen.38–40 It was

found that the ER response element

(ERE) is the primary target for the ER,

despite the observations that AP1 and SP1

sites can be the targets for ER

regulation.40 The fact that a large number

of genes are oestrogen responsive and that

many of these genes are involved in

growth regulation is not novel; however,

the observation that only a small number

of genes (�89) out of 19,000 represented

on an array are direct targets of ER

suggests that the primary transcriptional

targets for ER are limited. The

concordance between the array results in

cell lines is significant and points to some

common transcriptional rationale. When

the ER expression cassette is compared

with the genes that determine ER status

in breast cancers (see below), there is

indeed more overlap than expected by

chance alone.41 Thus, despite the noise in

the system, the ordered control of gene

expression by ER is relatively consistent

across several human cell systems.

Interestingly, the near ubiquity of ERE

in the genome, and the fact that many

EREs bind to ER, suggest that there are

more factors involved in ER signalling

than simply the presence of even a perfect

ERE. Using EREs validated by ER

binding, it has been found that specific

sequences within a 250 bp proximity of

the core ERE can significantly improve

the prediction of ER binding (paper in

preparation). The complexity, yet

consistency, of the genomic level read-

out provided by these arrays enables the

reclassification of selective ER modifiers

based on their DNA-binding patterns and

gene expression profiles. The on-target/

off-target considerations can be parsed

with high resolution.

The logical extension of this concept is

that specific oncogenic origins of any

cancer may be marked by a specific

expression fingerprint. If this is true, then,

theoretically, any discernible expression

cassette can be used to trace a specific

genetic mutation of a tumour.

Experimentally, it is not possible to prove

this with human tumours; however, Desai

et al.42 sought to resolve this using

transgenic murine models of mammary

cancers. They examined the gene

expression patterns of mammary

carcinomas from mouse transgenic lines

bearing one of six oncotransgenes driving

expression to the mammary gland

(MMTV-Ha-ras; MMTV-neu; MMTV-

polyoma middle T antigen; WAP-SV40

large T antigen; C3T-SV40 large T

antigen (SV40LT); and MMTV-myc), and

found that the tumours arising from

mutant Ha-ras, neu and polyoma middle T

(PyMT) antigen transcriptionally behave

as a cluster. The tumours from animals

expressing SV40LT antigen clustered

together regardless of the promoter used,

and those from the myc transgenics were

represented in another distinct cluster. ras,

neu and PyMT converge on the ras-

MAPK pathway, and the mechanisms of

action for SV40LT and myc are distinct.

Taken together, this suggests that

oncogenic pathways have primacy in

defining downstream expression patterns

over the effects of individual genes. The

mammary cancers from the different

oncotransgenes were associated with the

Different genetic origins
of tumours inhibit
distinguishable
expression signatures

Oncogenic pathways
have a greater impact
on creating
transciptional profiles
than individual genes
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induction of specific gene cassettes which

may be associated with certain phenotypic

differences. For example: calcium

signalling pathways with the SV40 LT

transgenic tumours; ribosomal RNA and

Notch pathway genes with the myc

transgenic tumours; and cyclin D1, cdk-2

and E2F with the ras-neu-PyMT group.

The observation that specific genetic

points of origin in tumours give rise to

discernable expression profiles has also

been seen in human tumours. Jazaeri et

al.43 studied the transcript profile of

ovarian cancers from carriers of BRCA1

or BRCA2 germline mutations and

compared them with sporadic ovarian

cancers. Biochemically, BRCA1 and

BRCA2 appear to be primarily involved

in DNA repair. Moreover, sporadic

ovarian cancers harbour no mutations in

either BRCA1 or BRCA2. Based on

this information, the expectation is that

BRCA1 and BRCA2 ovarian cancers

would resemble each other, but would

be different from sporadic cancers.

Surprisingly, however, their results

revealed that BRCA1 and BRCA2

ovarian cancers were distinct from one

another and that all the sporadic cancers

could be divided into those with a

BRCA1-like profile and those with a

BRCA2-like profile. Thus, tumours

with BRCA1 and BRCA2 points of

origin may engage different downstream

pathways. This was also observed in

breast cancers arising in BRCA1 and

BRCA2 carriers,44 although the results

were more confounded by the different

ER status and grade of the tumours.

Interestingly, Jazaeri et al.43 noted that

an unusual number of genes on

chromosome Xp11, including some

known to be involved in maintaining

ovarian structures, were consistently

upregulated only in BRCA1 mutant

tumours. They suggested that BRCA1

might act to repress genes on regions of

the X-chromosome. This was

corroborated by in vitro observations by

Ganesan et al.,45 who found that

BRCA1 colocalises with non-coding

XIST RNA that coats inactivated X-

chromosomes, and that BRCA1 is

needed for X inactivation. More

recently, Jazaeri46 further confirmed that

when a BRCA1 construct was

introduced into a BRCA1-negative cell,

genes on chromosome Xp were

specifically downregulated by BRCA1.

Taken together, these results show that,

despite the biochemical similarities of

BRCA1 and BRCA2, in that they are

both involved in DNA repair and

homologous recombination, their

transcriptional footprints are different

and may generate different carcinogenic

cascades that are definable with high

resolution using microarrays. Moreover,

this collection of studies shows that the

strategic use of array approaches can

uncover completely new associations

surrounding one key gene.

In another example of pathway

assessment in primary cancers, Ferrando

et al.47 explored pathway discovery in

one of the cancers most tractable for

molecular studies: acute leukaemia. Using

expression microarrays, they found that

expression signatures of T cell leukaemias

were consistent with the arrest of these

leukaemic cells at specific stages of

normal thymocyte development.

Specifically, they were able to identify

HOX11L2 (TLX3) activation as an

important event in T cell

leukaemogenesis, conferring a poor

response to treatment. This is surprising,

given the positive prognostic effect of

another HOX gene, HOX11 (TLX1).48

CLINICAL
STRATIFICATION:
PATIENT SELECTION FOR
OPTIMAL THERAPY
Expression profiling,
prognostic subsets and markers
of tumour behaviour
The notion that genetic or biochemical

markers in tumours can segregate patients

into therapeutic subsets has been well

established in clinical pharmacology.

There are host genes that reflect the

host’s tolerance of therapy, as in the case

BRCA1 specifically
alters expression of
genes on chromosome
Xp
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of thiopurine S-methyltransferase activity

in determining haematopoietic toxicity in

childhood leukaaemias.49,50 An even

greater literature exists on the marker

configurations of cancer and how they

relate to treatment efficacy.51 Notables

are HER-2/neu in breast cancer and

bcr/abl in chronic myelogenous

leukaemia, both markers for clinical

outcome and specific tumour

characteristics and, equally importantly,

both now targets for specific and

effective therapeutics (see above). From

these monogenetic beginnings has arisen

the current format for discovery: highly

multiplex and parallel ascertainment of

biomarkers using EST sequencing or

expression microarrays.

Some of the best information relating

expression profiles and prognosis are in

breast cancer, the leukaemias and

lymphomas. In primary breast cancer,

Perou et al.52 analysed gene expression

patterns in normal and malignant human

breast tissues from 42 individuals. Their

analysis revealed two major subtypes based

on the expression characteristics of 496

selected genes. One subgroup was

characterised by tumours distinguished by

the expression of genes normally expressed

by breast luminal cells and were clinically

associated with ER-alpha positivity. The

second subgroup was characterised by

tumours predominantly expressing genes

associated with breast basal/myoepithelial

cells (keratins 5 [KRT5] and 17 [KRT17],

laminin and fatty-acid binding protein 7,

secreted frizzled-related protein 1

[SFRP1], the oncogene c-kit and lower

expression of fibronectin 1 [FN1] and

mucin 1 [MUC1]) and that were mainly

ER negative.

Subsequently, it has been consistently

observed that the major factor that appears

to affect the expression profile-based class

of breast cancer is the ER status. Sorlie et

al.53 refined this classification by analysing

a larger number of breast tumours

analysed by similar microarray cDNA

platforms. They observed that the

luminal/ER+ tumours could be further

subdivided into at least two subgroups

with distinct molecular signatures.

Luminal subgroup A was characterised by

the highest level of ER expression, as well

as by a high expression of GATA-binding

protein 3, hepatocyte nuclear factor 3Æ,

X-box binding protein 1, trefoil factor 3

and LIV-1. The second subgroup (B+C)

showed lower expression of the luminal-

specific genes. Importantly, these array-

based subgroups could discern prognostic

differences. The basal-like/ER– subgroup

had the shortest relapse-free and overall

survival, but the luminal subtypes could

provide prognostic differences not

previously observed: luminal subgroup A

showed the best clinical outcome, with an

almost 80 per cent survival, whereas the

luminal B+C subgroup had

approximately half this survival rate.

In analysing a cohort of 99 breast

cancer patients, Sotiriou et al.54 also found

that the ER status of the tumour was the

most important discriminator of

expression subtypes. Tumour grade was a

distant second, whereas lymph node

positivity, tumour size and menopausal

status were not associated with clear

expression patterns. The larger ER-

positive subgroup was again similar in

expression profile to the luminal-like

subtype described by Sorlie and Perou,

and the ER-negative subgroup was more

akin to the basal-like subtype.

Interestingly, despite the differences in

patient populations, treatment and array

platforms used, the survival outcomes of

the array subgroups were remarkably

similar to those in these two comparable

studies: the luminal-like subgroup had

better relapse-free and breast cancer

survival when compared with the basal-

like tumours. Three subgroups were

found within the luminal-like

(predominantly ER-positive) cluster that

showed distinct differences in survival.

Luminal-1 had the best outcome, with an

80 per cent ten-year relapse-free survival,

and was correlated with lower grade

tumours and higher expression of c-kit,

hepatocyte growth factor (HGF ), insulin-

like growth factor-binding protein-3,

activating transcription factor-3 (ATF-3),

Expression genomics
can define specific
classes of tumours
associated with clinical
behaviour

Oestrogen receptor
positive breast tumours
exhibit greater
heterogeneity in gene
expression patterns and
clinical outcome than
oestrogen negative
tumours
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as well as components of the AP-1

transcriptional factor. There was,

however, attenuated expression of cell

growth-associated genes. The luminal-2

subgroup had the worst outcome, with a

ten-year relapse-free survival of 40 per

cent, and was characterised by higher

expression of tumour necrosis factor

receptor-associated factor 3 (TRAF3),

RAD21, BRCA1-associated protein 1

(BAP1), a protein tyrosine phosphatase

type IVA member (PTP4A2) and lower

expression of CXCR4, ATF-3, FGFR1

and VCAM1. The luminal-3 subgroup

had an intermediate survival outcome of

60 per cent at ten years. Intriguingly,

although ERBB2 overexpression is a

known and powerful prognostic factor,

there was no clustering of ERBB2-

overexpressing tumours in any of the

luminal subgroups to account for the

differences in clinical outcome. All of

these subgroupings were confirmed in a

‘meta-analysis’ of three independent

datasets of detailed array and clinical

data.55

Two reports from the Netherlands

Cancer Institute56,57 used expression

arrays to identify marker clusters that

could predict for clinical outcomes such as

relapse and death from cancer. Using a

25,000 genetic element array, 70 genes

were found whose expression profile

could segregate untreated, node-negative

patients into prognostic groups in terms of

relapse and death. Their 70-gene classifier

performed better than the standard St

Gallen and the National Institutes of

Health consensus clinical prognostic

indicators. In a follow-up study with 295

node-negative and node-positive patients,

many of whom also received adjuvant

therapies, this 70-gene classifier could

identify those with odds ratios .5 for

developing distant metastases.

These studies show that expression

profiling can consistently identify groups

of patients who will have a poor

outcome. Moreover, they have

uncovered a hierarchy of biological effects

for these markers: the ER status and grade

of the tumour appear to have a greater

influence on the expression profile of

breast cancers than do nodal status or

tumour size. The finding that the same

expression profiles are associated with

specific clinical outcomes, regardless of

stage of diagnosis, suggests that the

metastatic potential of a tumour is decided

early in the course of the disease. Many of

these markers are already being developed

into prognostic ‘arrays’ for clinical breast

cancer use.58

The experimental strategy used in the

breast cancer studies discussed delved into

the cluster of genes that defined tumour

classes and did not focus on the clinical

associations of individual genes. Studies

on the expression genomics of prostate

cancer have been more centred on using

expression arrays to identify specific

markers of prognosis. Singh et al.59

assessed the expression patterns of 52

prostate cancers and found a set of genes

that correlated with a standard measure of

differentiation, the Gleason score.

Interestingly, a minimal group of five

genes (ITPR3, sialyltransferase I, PDGFR-

beta, chromogranin A and HoxC6) were

identified that could predict for relapse.

Dhanasekaran et al.60 examined a smaller

number of primary prostrate cancers and

normal prostates. They found a consistent

downregulation of PTEN and gelsolin

(also affected in mammary/breast

cancers), upregulation of c-myc and

upregulation of hepsin, a transmembrane

serine protease, and pim-1, a serine/

threonine kinase. These findings were

confirmed for hepsin and pim-1 by using

tissue arrays scanning over 700 prostate

cancers: low hepsin or high pim-1

expression was correlated with bad

outcome. In a further extension of these

observations, this same group found that

the increased expression of EZH2 was

associated with the metastatic state in

prostate cancer. EZH2 is the human

homologue of the Drosophila protein

enhancer of zeste (E[z])2, a polycomb

protein involved in homeotic gene

expression during development. EZH2 is

thought to be a chromatin-associated

regulator of gene expression and siRNA

Transcriptional profiling
can be used to avoid
unnecessary
administration of
adjuvant therapies in
breast cancer
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knockdown of EZH2 expression

inhibited cell proliferation.61 Thus,

expression arrays were used as a screening

tool for gene discovery, and the individual

marker relevance was validated by

exploiting tissue arrays and in detailed in

vitro experimentation.

Because of the ease of tissue access —

and a good understanding of normal and

malignant biology — malignant

lymphomas and acute leukaemias have

been especially informative diseases to

study using these genomics approaches. In

an elegant series of studies, the St. Jude

group investigated the comprehensive

expression architecture of over 300

childhood acute lymphoblastic leukaemia

(ALL) cases.62–64 They found that the

leukaemias could be classified into distinct

subgroups that correlate with histological

and cytogenetic abnormalities such as T-

ALL, hyperdiploid with .50

chromosomes and BCR-ABL, E2A-PBX,

TEL-AML1, and MLL rearrangement. In

addition, these genome-wide approaches

uncovered a new leukaemic subgroup

that lacked consistent cytogenetic

abnormalities. Where the array-based

classification and the cytogenetic

assignments disagreed in the assignment of

the TEL-AML1 subclass, more detailed

molecular testing always confirmed the

array assignment by finding cryptic

genetic rearrangements of the TEL

transcription factor. Not only did this

verify the array-based classification, but

also suggested that the important

component of the rearrangement is in the

TEL locus.

More recently, two groups refined

these analyses further. Bullinger et al.65

examined 116 AML samples and derived

a 133-gene prognosis classifier that could

predict survival. Uniquely, this prognosis

classifier could predict outcome even in

patients with normal karyotypes. Valk et

al.66 uncovered expression-defined gene

clusters associated with specific

cytogenetic abnormalities that could

predict cytogenetic configuration in a

separate validation set. The results from

both studies are surprisingly similar, with

a definable hierarchy of impact of specific

cytogenetic configurations. t(8;21) —

AML1/ETO; inv(16) — CBF �/MYH11;

and t(15;17) — PML/RARÆ defines

three separate clusters requiring only a

minimal number of genes to define that

cluster — for example, ETO for t(8;21),

MYH11 for inv(16) and HGF for

t(15;17); however, all other cytogenetic

classes were less distinct.

Taken together, recurrent observations

arise from these array studies: expression

profiles are consistently associated with

specific cancer phenotypes; there is a

hierarchy of biological effect for these

biomarkers; and the expression profile can

be more precise in defining cancer

subtypes than single markers alone.

Predicting response to therapy
In primary tumours, progress in

identifying expression patterns predictive

of therapeutic response have been most

advanced in malignant lymphomas and in

breast cancer. The predictive potential of

arrays in leukaemias, discussed above, is

primarily because of the known

associations of cytogenetic class with

therapeutic response. Alizadeh et al.67

compared the patterns of gene expression

of primary diffuse large B cell lymphomas

(DLBCL) with those of normal lymphoid

cells at different stages of differentiation.

They found that DLBCL could be

divided into at least two major expression

subclasses, one that resembled activated

normal B-lymphocytes with a distinctly

poor prognosis, and another that

resembled germinal centre B-cells with a

good prognosis. These studies were

extended with the Lymphoma/Leukemia

Molecular Profiling Project,68 which

increased the analysis to 240 patients with

DLBCL. This later study confirmed the

association of an activated B cell-like

subgroup with poor prognosis (median

survival � two years), and of a germinal

centre B cell-like subgroup with good

prognosis (median survival � seven years).

They also identified a third subgroup

from expression arrays, whose survival

profile (median survival � two years) was

The key cytogenetic
drivers for expression
signatures in acute
myclogenous leukemia
are AML1/ETO, CBF �/
MYH11; and PML/RARÆ

Expression profiling
describes molecular
subclasses in non-
Hodgkins lymphoma
associated with
outcome after
treatment

In leukemias,
expression profiling can
identify a hierarchy of
impact of specific
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similar to that of the B cell-like subgroup.

In total, five patterns of expression

signatures were discerned; the MHC class

II signature, germinal centre signature and

lymph node signature were associated

with a good prognosis, whereas the

proliferation signature and genes in

‘another’ category were associated with a

poor prognosis. These results can be

interpreted as being predictive of response

to standard chemotherapy, since all

patients received doxorubicin-based

combination chemotherapy. Shipp et al.69

specifically investigated those profiles

associated with survival and identified a

set of 13 genes that divided 58 patients

with DLBCL into a good outcome group

(five-year overall survival of 70 per cent)

and a bad outcome group (five-year

overall survival of 12 per cent). The

overlap of some of these genes (NOR1,

PDE4B, PKC-beta) with the prognostic

gene set of Alizadeh et al.67 raised the

possibility that these genes may have a

significant role in the biology of human

lymphomas. Of note, small molecular

inhibitors against protein kinase C-beta

(PKC- beta) have been developed and

appear to be effective against xenograft

epithelial tumours.70–72 Informed by these

array results, clinical trials are ongoing to

investigate the efficacy of these inhibitors

in lymphomas.

The fact that the expression behaviour

of a gene is associated with sensitivity to

chemotherapeutic agents in vitro has been

well documented using the NCI 60 cell

lines.73–75 Kikuchi et al.76 furthered this

concept to primary cancers by comparing

the expression profiles of primary lung

cancers with their in vitro behaviour in a

cell-based assay for chemotherapeutic

sensitivity. They observed that the

expression levels of two previously

uncharacterised genes were highly

correlated with sensitivity to CPT11 and

to gemcitabine.

Once again, investigators in the St.

Jude group exploited their understanding

of the pharmacology of treatments for

childhood ALL and used expression arrays

in uncovering gene cassettes associated

with primary drug resistance. They tested

the response of leukaemia cells from 173

patients (on whom they had detailed

information on the in vitro sensitivity of

the cells) to the most common anti-

leukaemia therapies using an Affymetrix

array platform for patterns of gene

expression.77 The array results were then

progressively correlated with the

sensitivity profile for each of the four

compounds vincristine, asparaginase,

prednisolone and daunorubicin. Using

specific expression cassettes correlating

with the sensitivity of each individual

agent, they were able to predict in vivo

treatment outcome in a validation set of

leukaemia patients. Intriguingly, 121 of

the 124 treatment-outcome genes had not

previously been associated with drug

resistance.

An extension of the therapeutic

question is whether the response of the

tumour cells after chemotherapeutic

exposure could predict future therapeutic

response/outcome. Sotirou et al.78

addressed this in a clinical setting by

examining the expression profiles of ten

untreated patients undergoing

doxorubicin-based chemotherapy for

primary breast cancer before and after the

first cycle. Samples were taken using fine

needle aspirates. Five had partial

remissions (poor responders) and five

patients achieved clinical complete

remission (good responders). Although

very few genes in the pretreatment

samples could distinguish good from poor

responders, the expression profile of the

tumour aspirates 21 days after the first

cycle of chemotherapy was predictive of

response: the good responders had ten

times the number of gene outliers than

the poor responders. Thus, temporal

changes in gene expression after

chemotherapy can be used to quantify

pharmocodynamic response. These

authors noted upregulation of genes

implicated in differentiated states such as

laminin,TIMP1 and CDK9, and

downregulation of cell proliferation genes

such as that encoding minichromosome

maintenance protein 2 (MCM2). Cheok

cytogenetic
abnormalities

The number of genes
whose expression is
altered after
chemotherapy is an
indicator of probability
of response
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et al.79 took this observation further and

assessed the in vivo response of lymphoid

leukaemic cells in patients undergoing

methotrexate and mercaptopurine

therapy. They found 124 genes that

discriminated between the different

treatments — that is, the gene expression

changes were treatment specific, and the

effect of combination therapy was not the

same as the summation of single-agent

treatment.

Bani et al.80 expanded these studies by

exploring the genome-wide expression

changes in a controlled xenograft model

of ovarian cancer after paclitaxel

administration. The majority of gene

expression changes occurred 24 hours

after the paclitaxel dose and, again,

therapeutic response was correlated with

the number of genes that changed. In

responding tumours, genes involved in

cell-cycle regulation and cell proliferation

(CDC2, CDKN1A, PLAB and the gene

encoding topoisomerase IIalpha

[TOP2A]) were coordinately perturbed in

the direction of growth cessation.

Metabolism genes were uniformly

downregulated, as were genes involved in

interferon-mediated signalling (G1P3,

IFI16, IFI27, IFITM1 and ISG15).

Extending this to a larger panel of cell

lines, these authors found that the most

consistent expression markers of drug

sensitivity were the upregulation of

CDKN1A (p21/Cip1) and the

downregulation of TOP2A, directions of

gene expression associated with cell-cycle

arrest. Thus, in both the human clinical

situation, as well as in xenograft models,

gene expression evidence of a cessation of

proliferation appears to be associated with

good therapeutic outcome.

HOST ONCOGENOMICS:
GENETICS OF TUMOUR
BEHAVIOUR
Classical pharmacogenetics studies

investigated the genes that modulated

drug effects primarily by altering drug

metabolism.81 These genetic variations

would lead to differences in therapeutic

response. The aspect that previously has

not been well considered, however, is the

role of germline genetics on the primary

behaviour of a tumour. It was assumed

that the virulence of a cancer, for example

its metastatic potential, was a result of

environmental exposure, or from

stochastic events.

Hunter82 questioned this logic by

asking whether by keeping the oncogenic

inducer constant, one could assess the

effect of distinct host genetic factors on

the phenotypes and the expression profiles

of the resultant cancer. FVB/NJ animals

bearing the MMTV-PyMT

oncotransgene were crossed to five

different strains. The transgene-bearing

F1 mice all developed mammary cancers,

but with distinct phenotypes of different

tumour latencies, growth rates and

metastatic potential. By examining the

expression profiles of a large number of

these tumours, Qiu et al.83 found that host

genetic backgrounds can alter the

downstream expression profiles of the

cancers, and that the tumours from the

different backgrounds could be further

grouped together: 1) tumours derived in

the LP/J F1 and MOLF/Ei F1 strains,

where tumour growth and dissemination

are suppressed and latency prolonged; 2)

the most aggressive tumours from the

FVB/NJ parental strain and I/LnJ F1

genomic backgrounds; and 3) an

intermediate virulence phenotype with

tumours from NZB/B1NJ F1 crosses.

Intriguingly, of the 17 genes whose

expression was previously suspected to

define a metastasis phenotype in human

cancers,84 16 murine orthologues in this

study also predicted the ability to develop

lung metastasis in the PyMT model of

mammary cancer .83 More generally, one

advantage of this animal model for breast

cancer is that defined normal breast can be

used as a reference. Thus, all experiments

described here used RNA from the

mammary glands of 16-week virgin

female animals as a reference. With this

design, those genes associated with

mammary gland transformation can be

consistently identified. Interestingly, a

significant number of genes and their

The genetic make-up of
an individual can alter
tumour behaviour
associated with changes
in expression signatures
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related members found to be perturbed in

mouse mammary tumours have also been

reported to be altered in human breast

cancers.

These findings suggest that the

germline genetic make-up of an

individual may have a significant role in

determining the virulence of a primary

cancer. Such virulence factors as tumour

grade or invasiveness would have an

impact on the choice of, and the

responsiveness to, specific therapeutics.

PHARMACOTOXICITY
Genetic polymorphisms in metabolising

genes have long been implicated in

modulating drug toxicity and will not be

discussed here. Concerning gene

expression, a number of studies have

already shown that specific toxic agents

can give specific gene expression

signatures.30,85–87 These signatures can

therefore be used to address whether a

drug might have off-target effects or

might induce end-organ toxicity. As the

database of expression signatures

improves, it is conceivable that new drugs

can be categorised in terms of how they

can be clustered together. In this manner,

expression signatures can be used to

redefine chemical ‘space’. Thus, drugs

with a common toxicity profile might

cluster together in the transcriptional

signature they produce in liver cells.88–90

Kier et al.91 used limited microarrays with

rat-specific toxicologically relevant genes

to generate profiles and outcomes for 89

compounds. Gene expression specific to

dose and time for many compounds could

be clustered together, suggesting similar

mechanisms of liver toxicity. Moreover,

these authors observed that the expression

signature at 24 hours was found to

correlate well with organ toxicity seen at

72 hours. Such an approach has been

piloted in assessing susceptibility to

radiation-associated toxicity using the

expression response in lymphoblastoid cell

lines as surrogate tissues.92 As might be

expected, companies have used this

strategy potentially to select chemical

leads with less toxicity (Gene Logic,

Gaithersburg, MD. http://

www.genelogic.com/solutions/

toxexpress/).

Previously, the limiting factor for the

application of expression microarrays in

toxicology studies was the absence of a

rich EST database for the species

commonly used for toxicological testing:

rats and dogs. Although this is, in large

part, being solved, the widespread

development has lagged behind work in

mice and in humans. This, coupled with

the fact that many of the data generated

are proprietary, has limited the

expansion of expression genomic

approaches in toxicology testing in drug

development.

INTEGRATED GENOMIC
STRATEGY FOR
PHARMACEUTICAL
DEVELOPMENT
It has been long acknowledged that the

drug discovery process needs to be

improved, and that genomics might

provide such a solution; however, the

reality is that the sequencing of the

human genome has not been able to give

new targets directly, but is a strong

enabling platform for innovations in drug

discovery. This paper provides evidence

that transcriptional genomics is a

technology that is very appropriate for

advanced pharmacological applications.

The author’s conceptual and operational

recommendations are as follows:

1. Genomic information, when

interchangeable increases its value as the

size of the database and the quality of its

annotation expands. Thus, the standard

approach of each research unit

(discovery, therapeutic areas,

bioinformatics, toxicology) holding its

own expression data and other

genomic data is a wasted opportunity,

just as much as internet connectivity

limited to a single research unit is a

wasted resource. All genomic data,

including expression, sequence, single

nucleotide polymorphism and

comparative genomic data, should be

The gene expression
signatures of cellular
toxicity may be able to
predict the toxicity of a
new compound
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placed in a common database using

standards such that meta-analyses can

be performed on the entire dataset.

This opens up the possibility that

different and completely unexpected

and new indications for drugs in

development can be discovered

through computational means.

Although institutions defend the

integrative nature of their databases,

most commonly the integration is

available only to the bioinformatics

experts or is actually piecemeal. What

is needed is a platform whereby the

biologists and the chemists involved in

the development of a specific lead

compound can directly access all

pertinent information, rendered in a

useable manner to bench scientists.

2. Genomic information is best used in an

iterative fashion with wet lab biology. The

standard operational concept that large

genomics studies can be performed by

one isolated unit within a company

and then ‘handed off’ to the

therapeutic areas for exploitation is not

viable, and is very costly. Instead, an

incremental and repetitive process of

hypothesis generation through

genomic approaches, followed by wet

lab — biological validation and

experimentation — is the best

strategy.

3. The wealth of validated markers

arising from these genomics

approaches, which can be very

precise in assessing cellular and

clinical states, suggests that biomarkers

will play an increasingly important role in

cellular and preclinical screens and in

Phase I dose-finding exercises. Given

that multiple markers can provide a

more refined estimate of a clinical

state, simply asserting that the

purported target of a therapeutic is

downregulated by an inhibitor may

be insufficient to prove specificity.

The author projects that large panels

of markers will be used, rather than

single tests. These markers will be

used in the full research and

developmental cycle: in screening

compounds, in preclinical target

ascertainment, in toxicological

assessements, in patient stratification

and selection, and in clinical

monitoring. Moreover, the coupling

of marker development with the

therapeutic will be increasingly

important (eg Herceptin/trastuzumab

therapeutic and HercepTest or

PathVysion diagnostic). This suggests

that there should be renewed interest

in the biomarkers sector.

4. Rational combinations of targeted

therapeutics must be one of the future goals

of the pharmaceutical industry. The

concept of tailored therapeutics

specifically styled for the individual

patient requires combining treatments

that target individual clinical

‘signatures’. Given the combinatorial

possibilities, some conceptual

framework will be needed to guide

the development of drug

combinations. The author believes

that assessment of global gene

expression changes can provide the

information to project the optimal

combinations for a cellular phenotype.

The first applications might be in

synthetic ligands and inhibitors for the

nuclear hormone receptors where the

expression read-out is the most

proximate response to drug

intervention.

5. The author believes that the precise and

complete mapping of transcriptional

regulatory networks is feasible in certain

conditions. Such a map will provide the

necessary framework to test whether

pharmacological output can be

predicted much in the same way that

small molecular structures that dock

enzyme pockets can be estimated.

Such an approach can be considered as

predictive pharmacology.

6. The same factors that heighten the

effectiveness of expression genomics in the

drug discovery process are also the factors

that can curtail the development process.

The breadth and comprehensiveness

of genomic data are both advantageous

and disadvantageous. If, in the course

Information integration
will be key in making
predictive
pharmacology a reality

& HENRY STEWART PUBLICATIONS 1473-9550. BRIEF INGS IN FUNCTIONAL GENOMICS AND PROTEOMICS . VOL 3. NO 4. 303–321. FEBRUARY 2005 3 1 7

Expression genomics and drug development: Towards predictive pharmacology



of an array experiment, an oncogene

has been uncovered that is consistently

upregulated by a drug to treat diabetes,

does this mean that even without

biological plausibility, the

development of the compound should

be stalled or even aborted? Certainly,

there is a concern that in the

toxicological analysis of expression

array data, any expression change that

raises the remotest doubt as to the

safety of a compound would be

viewed negatively. Given the broad

nature of the expression response to

any agent, there is always a possibility

of a single gene acting in what might

be considered as an adverse manner,

despite the absence of any biological

significance. How regulatory agencies

will deal with this information is

unclear. Equally concerning, however,

is how decision makers within a

pharmaceutical company will treat

such information. Would small

ambiguities among this mass of

information lead them to abort a

project simply because of speculative

toxicities?

Overall, the outlook is good. The speed,

precision and predictive power of such

genome-wide approaches will surely

accelerate the discovery and validation of

new targets and new drugs. The limiting

factor is archaic organisational structures

that cannot adapt to such fluid and

voluminous data flow. This, therefore,

will be our foremost challenge.
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