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Bioinformatics-centric drug development is inevitable in the era of precision medicine. Clinical ‘omics

information, including genomics, epigenomics, transcriptomics, and proteomics, provides the most

comprehensive molecular landscape in which each patient’s pathological history is delineated. Hence,

the capability of bioinformaticians to manage integrative ‘omics data is crucial to current drug

development. Bioinformatics can accelerate drug development from initial time-consuming discoveries

to the clinical stage by providing information-guided solutions. However, many bioinformaticians do

not have opportunities to participate in drug discovery programs. As a starting point for

bioinformaticians with no prior drug development experience, here we discuss bioinformatics

applications during drug development with a focus on working-level omics-based methodologies.

Introduction
The legacy of past genomics efforts is the es-

tablishment of the human reference genome

and the identification of genomic variability and

disease associations. The findings have led to

the widespread acceptance of the concept of

precision medicine, but the lack of fast, cost-

effective technologies to delineate whole gen-

omes has delayed the clinical implementation

of precision medicine. The latest advance in

next-generation sequencing (NGS) enabled the

sequencing of >50 human genomes per run at a

cost of < S$1000 per genome. Thus, a challenge

to realizing precision medicine is being resolved,

improving the prospect of precision oncology.

Nonetheless, other challenges remain. Al-

though NGS-based international projects [The

Cancer Genome Atlas (TCGA) and International

Cancer Genome Consortium (ICGC)] have con-

siderably increased the number of actionable

cancer mutations [1], the functional impact of

mutations on drug targets is largely unknown.

Recent base editor technologies allow high-

throughput functional characterization of

C�G!T�A and A�T!G�C, which account for

more than half of pathogenic mutations [2], but

technical limitations remain. Moreover, the low

efficiency of traditional drug development is

inadequate to address the myriad therapeutic

targets. Given that the availability of new drugs

tailored to individuals is crucial to support

precision medicine, this low efficiency could be

an obstacle. The low efficiency is attributed to

the intrinsic difficulties of drug development

itself, including clinically relevant target-indica-

tion selection, efficacy and safety issues with

compounds, drug resistance, and the absence
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ollaborative efforts in multidisciplinary fields

re fundamental. However, we believe that

ioinformatics offers rational solutions to some

f the issues, as evidenced by research indi-

ating that genetically supported targets can

ouble the success rate of clinical development

], and that genomics has the potential to

prove the odds of developmental success [4].

arget selection

he major impact of bioinformatics on drug

evelopment lies in the identification of thera-

eutic targets for any disease, provided that

ufficient data are available. The importance of

recise targets cannot be overemphasized be-

ause clinically irrelevant targets are the main

sometimes biomarkers, correct target selection

is a prerequisite for successful clinical trials.

In conventional drug development, targets

are selected in several ways: (i) literature studies;

(ii) characterization of individual genes; and (iii)

fast-following already-approved targets or those

under development. These approaches are still

useful but depend on nonsystematic, gene-by-

gene methodologies. Challenges can arise with

these approaches if doubt exists regarding the

justification of target prioritization; that is, why

one target is preferentially selected before

others. In the case of the fast-following ap-

proach, a concern is that considerable devel-

opment efforts are limited to a few promising

targets. By contrast, ‘omics-based approaches

clinical relevance if proper computational

frameworks are organized based on the fol-

lowing analytical features (Fig. 1a): (i) multilay-

ered data interrogation; (ii) interpretation by

high-throughput functional screening data; and

(iii) target prioritization.

Analytical strategies for target selection
Target-disease associations can be interrogated

with the following omics-based analytical points

(Table 1).

Genome
Persistent genomic alterations have a significant

impact on cancer pathogenesis. The main goal is

to isolate cancer-associated driver variants by
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IGURE 1

mics-based approaches in conventional drug development. (a) A computational framework for target selection that interrogates multilayered data. (b)
ranscriptome-based hit discovery that interrogates the transcriptional relationship between diseases and drugs. ‘Reverse Match’ (‘Positive Match’): negative
ositive) correlations between disease signatures and drug signatures. (c) Transcriptome-based drug sensitivity prediction by assessing the connectivity
etween responder signatures or drug signatures and CCL/patient signatures. (d) Omics-based biomarker identification. Biomarker candidates, including
utations, copy-number alterations (CNAs), and/or gene expression alterations, can be identified through comparative multiomics analyses between
sponders (R) and nonresponders (NR) derived from sensitivity prediction described in (c). Abbreviation: CCL, cancer cell line.
ause of failure resulting from a lack of efficacy
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pressure, two patterns of recurrent mutations

are observed: gene-level recurrent mutations

indicate significant mutational prevalence over

the background mutation rate in the same gene,

which can be detected by tools, such as Mut-

SigCV [7]; and mutation hotspots, locations of

repeated mutation of the same amino acid

residue, tend to elicit oncogenic gain-of-func-

tion activity and are targetable by small-mole-

cule inhibitors [8]; (ii) mutational expansion: cells

harboring driver mutations that confer a growth

advantage expand among heterogeneous

intratumoral clones [9]. This evolutionary action

is determined by increasing variant allele fre-

quency during cancer progression [10]. The best

method to interrogate this evolution involves

the single-cell sequencing of temporal and/or

spatial series of samples, which provides high-

resolution mutational dynamics [11]; (iii) func-

tional prediction: the biophysical consequences

of variants on target proteins can be predicted

by several algorithms (SIFT, PolyPhen2, Condel,

FATHMM, and MutationTaster) using the Variant

Effect Predictor [12]; and (iv) prognosis: the

clinical relevance of mutated targets is assessed

by comparing the survival rates of patients

harboring the wild-type or mutant gene.

Transcriptome
The transcriptome is the most universal and

largest data source because of advanced tech-

nologies and its molecular role as the interme-

diary between DNA and protein. Genomic

information alone is insufficient because of the

frequent lack of actionable mutations or the

undruggable nature of key mutated proteins

(e.g., RAS and MYC) [13]. A study showing

transcriptome-dependent target selection [14]:

(i) differentially expressed genes (DEGs): DEGs in

clinical subtypes (e.g., normal versus cancer) are

fundamental for identifying nonmutated onco-

genic addiction [15]. DEGs are the input for

gene-set analyses [Enrichr [16] and Gene Set

Enrichment Analysis (GSEA) [17]] evaluating the

key pathways/mechanisms of targets; (ii) gene-

set analysis: because most genes exhibit corre-

lated/clustered transcriptional alterations,

specifying driver changes based on DEGs only is

difficult. Thus, gene-set analysis is more valu-

able. Unsupervised clustering of cohort data can

simultaneously classify transcriptomes and

patients, facilitating the functional annotation of

coexpressed targets and patient stratification for

treatment [18]. The clinical relevance of coex-

pressed targets is assessed by survival analyses

of classified patients. A gene-coexpression net-

work can be constructed to detect high-priority

targets that act as master regulators and key

pathways [19].

Proteome

Proteins as the major target molecule of drugs

are important. Reverse-phase protein array from

the TCGA covering the main druggable cancer

pathways facilitates an assessment of whether

targets are activated. Proteome data are rapidly

being acquired using recently developed mass

spectrometry (MS). The Clinical Proteomic Tu-

mor Analysis Consortium (CPTAC) data gener-

ated using TCGA cohorts highlight integrative

analyses, such as proteogenomics, promoting

new therapeutic opportunities [20]. Moreover,

phosphoproteomes and glycoproteomes from

CPTAC and Proteomics Identifications Database

Epigenome

Few clinical uses of epigenomic data exist, but

epigenome-driven patient classification is valu-

able for stratified medicine [22]: (i) enhancer

associations: because enhancers define tissue

specificity, ChIP-seq analysis of enhancer marks

(H3K27ac and H3K4me1) can link enhancer-as-

sociated targets to particular tissue lineages

[23]. Super-enhancers that define cancer master

regulators can facilitate the identification of

high-priority targets [24], especially in patients

without actionable mutations. The combined

information about tissue-specific enhancers

(e.g., Roadmap Epigenomics Project) and their

interacting genes (e.g., Hi-C data) can match

targets with indications [25]; (ii) differentially

methylated CpGs (DMCs): DMCs are examined as

causal mechanisms of DEGs. Unsupervised

clustering of DMCs classifies potential targets

and patient subtypes [26]. For example, hyper-

methylated subtypes in gastric cancer showed

higher immunoreactivity, facilitating target dis-

covery and patient selection for immunotherapy

[27].

Metabolome

Metabolite profiles are functional readouts with

strong phenotypic correlations, thus serving as

noninvasive biomarkers for precision medicine

[28]. Identification of patients with addiction of a

given metabolite can simultaneously identify

targets associated with a specific enzymatic

reaction and the metabolite as a biomarker (e.g.

oncometabolite D-2-hydroxyglutarate resulting

from IDH1/2 mutations in glioma [29]).

Interactome
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TABLE 1

Omics-based analytical points for target selection.

Data type/source Analytical points

Genome: TCGA, ICGC, NCBI
(GEO, SRI)

Identification of driver events: recurrent mutation, evolutionary action, functional prediction, prognosis
(wild-type versus mutant)

Transcriptome: LINCS, GTEx,
TCGA, ICGC, NCBI (GEO, SRI)

Gene/gene-set expression changes, differential expression in clinical subtypes, disease(tissue)-specific
expression, gene-set/clustering/network-based analysis, prognosis (high versus low)

Epigenome: Epigenome
roadmap, ENCODE, TCGA, ICGC,
NCBI (GEO, SRI)

Signal changes: association with regulatory elements, DNA methylation and histone modification: signa
changes and clustering analysis, (super)enhancer (cancer-type specificity), integration with
transcriptomes

Proteome: CPTAC, ICPC, PRIDE Protein/post-translation level changes, differential expression in clinical subtypes, disease(tissue)
specificity, integration with genomes/transcriptomes, gene-set/clustering/network-based analysis

Metabolome: HMDB,
MetaboLights

Level changes, differential concentrations in clinical subtypes, oncometabolites for targets, indications
and biomarkers

Interactome: BioPlex, BioGRID,
NURSA, OMNIPATH

Core nodes in interactome maps, protein–protein interactions, transcription factor–DNA interactions

Phenome: DepMap, CTRP, GDSC Genome-wide functional characterization, Integration of perturbagen efficacy, phenotype, and ‘omics
data
that cancer dependency is best predicted by

transcriptomes increased the value of
Please cite this article in press as: Mun, J. et al. A guide for
drudis.2020.08.004
(PRIDE) help to identify activated targets and

treatable patients [21].
 bioinformaticians: ‘omics-based drug discovery for precision on
Biological functions are orchestrated by bio-

physical interactions among DNA, RNA, and
cology, Drug Discov Today (2020), https://doi.org/10.1016/j.
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roteins [30]. Thus, drug discovery research has

cused on small molecules that perturb inter-

ctions (e.g., multimeric proteins, and enzyme–

ubstrate and receptor–ligand pairs); (i) protein–

rotein interactions: recent yeast two-hybrid

ystems and high-throughput affinity-purifica-

on followed by MS have systematically gen-

rated human interactome maps (e.g., BioPlex)

0]. Targets can be selected based on the

pological properties of essential nodes in

teractome networks [31]; (ii) transcription

ctor (TF)–DNA interaction: combined ChIP-seq

ata reveal co-occupancy of multiple TFs on

gulatory elements [32], revealing TF interac-

mes as a targeting strategy. Although tar-

eting TFs is challenging, the recent proteolysis

rgeting chimera (PROTAC) technology induces

e degradation of undruggable proteins, in-

luding TFs, by hijacking the endogenous E3

gase and ubiquitin proteasome system [33].

After the ‘omics-based interrogation de-

cribed earlier, another key challenge is to

rioritize target–disease associations by defin-

g robust scoring systems. Previously, the in-

grative platform OpenTargets adopted a

coring scheme that aggregates interrogated

ata through a four-tier process, including evi-

ence scores, data source scores, data type

cores, and overall scores [34]. An association

core per each evidence was calculated by

onsidering the confidence and strength of

rget–disease associations, and aggregation of

e resulting association scores was imple-

ented by the sum of the harmonic progression

f each score [35]. Another ranking scheme from

haros estimates the sum of the cumulative

robabilities across all data sources from Har-

onizome [36], which is defined as the Data

vailability Score [37].

igh-throughput functional
haracterization
rioritized targets should be supported by

nctional assessments because a high rank

oes not guarantee a causal relationship be-

een cancer and the target. The most powerful

trategy is the genome-wide loss-of-function

creen using short hairpin (sh)RNA or short

uide (sg)RNA libraries to systematically exam-

e cancer dependency profiles. The DepMap

ata constitute the Broad Institute Project

chilles (�94 000 shRNAs targeting �17 000

enes across 501 cell lines) [14] and the Novartis

RIVE (�158 000 shRNAs targeting �8000

enes across 397 cell lines) [38]. To analyze these

ata, the impact of targets on cancer cell sur-

with a unique barcode is determined by quan-

tification of depleted barcodes relative to the

original pooled library. Significant depletion

indicates functional implications of targets in

cell viability. These data can be analyzed and

applied as follows: (i) correction: substantial off-

target effects of shRNAs (mostly miRNA-seed

effects) can be corrected using computational

tools. DEMETER isolates the on-target effects of

shRNAs by removing inferred miRNA-seed

effects [14]. The current version, DEMETER2,

outperformed other tools in estimating absolute

and relative target dependencies [39]; (ii) over-

coming undruggability: �80% of targets with

strong cancer dependency were estimated to be

undruggable [14]. Undruggability is overcome

by targeting other proteins engaged in the same

pathways/complexes. Correlated dependency

profiles in DepMap combined with interactome

maps can select targets that bypass undrugg-

ability [14]. Another approach to overcome

undruggability is performing genome-wide

synthetic-lethal screens (e.g., the synthetic le-

thality of SAE2 with undruggable Myc) [40]; and

(iii) biomarker–target pairs: DepMap integrated

with ‘omics information of cell lines (CCLE [41]) is

useful for selecting biomarker-matched func-

tional targets.

Hit discovery
Following target selection, compound screening

assays are performed to discover drug-like

chemical structures (termed ‘hit compounds’)

with the desired activity or binding affinity to

the target. A representative assay is in vitro high-

throughput screening (HTS) using chemical li-

braries to identify hits without prior knowledge

of chemical classes. Although these assays are

automated, they can be laborious because ac-

tive recombinant proteins and high-quality

assays are needed for these repetitive experi-

ments with 106–107 compounds [42].

By contrast, computational approaches save

time and money, compensating for the weak-

ness of experimental assays. Since the com-

puter-aided development of viracept in 1997,

cheminformatics has served as an indispensable

method in drug development [43]. Virtual

screening (VS) is a major technique used to

identify drug candidates among in silico libraries

by two types of methodology: (i) structure

based: rational drug design is achieved using

known 3D structure of target proteins (e.g.,

molecular docking); and (ii) ligand based: active

compounds are used as query templates to

identify new chemical entities with similar

0.01–0.14% by HTS) [44]. A recent study suc-

cessfully performed structure-based ultralarge

library docking of 170 million virtual com-

pounds, which overwhelmed HTS [45]. Details of

cheminformatics-based drug discovery can be

found elsewhere [43,46].

Bioinformatics-based discoveries are based

on biological/molecular phenotypic activity. The

representative strategy is transcriptome-based

approaches adopting the basic concept of the

Connectivity Map [47], where similarities be-

tween genes, diseases, and drugs are examined

through pattern matching of transcriptional

profiles. In contrast to conventional target-first

discovery, transcriptome-based approaches

utilize gene expression signatures as inputs

reflecting the molecular/phenotypic activity of

diseases and drugs (Fig. 1b) [48]: (i) disease gene

expression signatures: molecular symptoms of

cancer can be represented by differential gene

expression between normal and cancer (termed

the ‘disease signature’). Various disease signa-

tures can be created based on clinical subtypes

or individual patients of interest; (ii) drug-in-

duced gene expression signatures: drug treat-

ment can induce differential gene expression

relative to vehicle (termed the ‘drug signature’).

Library of Integrated Network-based Cellular

Signatures (LINCS) has established >1.3 million

transcriptome profiles encompassing several

perturbagens (19 811 compounds, 18 493

shRNAs, 3462 cDNAs, and 314 biologics) across

3–77 cell lines [49]. The data were generated

using a high-throughput bead-array L1000,

which measures the expression levels of only

978 landmark genes to infer 82% of the whole

transcriptome [49]. This cost-effective method

enables the establishment of customized unique

drug signatures with extensive coverage to

boost novel discoveries.

To retrieve hit compounds, the connectivity of

these two signatures is interrogated using

nonparametric rank-ordered Kolmogorov–

Smirnov statistics [50] (Fig. 1b); ‘reverse match’

denotes the identification of potential hits that

can reverse a disease state to the normal state,

whereas ‘positive match’ indicates exaggeration

of a disease state by drug candidates. As a proof

of principle, a study demonstrated that the

reversal potency of disease signatures correlat-

ed with experimental drug efficacy in breast,

liver, and colon cancers [51].

Application of transcriptome-based hit
discovery
We briefly present a practical use of transcrip-

EATURES Drug Discovery Today �Volume 00, Number 00 � September 2020
ival is assessed by barcode sequencing. The

ffect of cell insertion of each shRNA/sgRNA
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proved hit discovery rates (>10% by VS versus
ioinformaticians: ‘omics-based drug discovery for precision onco
tome-based approaches involving the well-

established EGFR inhibitor erlotinib for
logy, Drug Discov Today (2020), https://doi.org/10.1016/j.
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EGFR-mutant lung cancer. Drug–drug connec-

tivity can reveal hits with distinct chemical

structures but similar biological effects as erlo-

tinib, whereas disease–drug connectivity can

identify hits that potentially reverse the disease

signature of EGFR-mutant lung cancer (Fig. 2).

We used three public data sets: (i) drug signa-

ture: HCC827 cells treated with 1 mM erlotinib

for 24 h (GSE51212); (ii) drug reference: 473 647

LINCS profiles (GSE92742); and (iii) disease sig-

nature: EGFR-mutant lung cancer versus

matched normal tissues (GSE40419). The drug–

drug connectivity using gcMAP [52] revealed

that erlotinib showed significant positive simi-

larity to inhibitors of EGFR, RAF, MEK, and PI3K

and negative similarity to EGF in the list of top-

ranked hits (Fig. 2a). The disease–drug connec-

tivity revealed inhibitors against EGFR and PI3K-

reconstituting the prior knowledge that EGFR

transmits signals from EGF binding through the

downstream RAS-RAF-MEK and PI3K-AKT cas-

cades, reflecting the capability of transcriptome-

based analyses to identify candidate drugs for

the treatment of biological states of interest.

Indeed, transcriptome-based approaches

have been used to discover drug candidates in

cancer. Applying the approach combined with

pathway-based prioritization, Nadine et al.

repositioned US Food and Drug Administration

(FDA)-approved tricyclic antidepressants as

inhibitors against lung and neuroendocrine

tumors [53]. Vera et al. found that citalopram is a

therapeutic option that reverses a metastatic

signature of colorectal cancer [54]. The Reverse

Gene Expression Score using LINCS estimated

the drug potency in the reversal of disease

method of transcriptome-based approaches,

OncoTreat, with which compounds are priori-

tized by their ability to reverse cancer depen-

dency driven by master regulators, repurposed

the HDAC inhibitor entinostat as a potent drug

for neuroendocrine tumors, resulting in the

launch of a clinical trial [55]. SynergySeq, an-

other modified approach, retrieves drug com-

binations by integrating drug signatures and

disease signatures [56].

Compound evaluation
Many hits discovered in public data have already

been patented. Even if customized libraries are

used, discovered hits should be pharmacologi-

cally improved to generate lead compounds

characterized by higher potency and selectivity

favorable metabolism, and limited toxicity [57]

Drug Discovery Today �Volume 00, Number 00 � September 2020 PERSPECTIVE
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FIGURE 2

An example of transcriptome-based hit discovery. (a) Drug–drug connectivity between the erlotinib signature and Library of Integrated Network-based Cellular
Signatures (LINCS) profiles retrieves compounds with similar transcriptional activity to erlotinib. Pos, positive match; Neg, negative match; Padj, adjusted P-value.
(b) Disease–drug connectivity between the EGFR-mutant signature and LINCS profiles retrieves candidate inhibitors that reverse disease signatures of EGFR-
mutant lung cancer.
,

mTOR as the foremost hits for EGFR-mutant lung

cancer (Fig. 2b). This analysis identified hits by
Please cite this article in press as: Mun, J. et al. A guide for
drudis.2020.08.004
signatures, identifying pyrvinium pamoate as a

potent hit in liver cancer [51]. As a modified
 bioinformaticians: ‘omics-based drug discovery for precision on
Given that this lead optimization phase

involves iterative rounds of chemical synthesis
cology, Drug Discov Today (2020), https://doi.org/10.1016/j.

www.drugdiscoverytoday.com 5
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ioinformaticians must collaborate with me-

icinal chemists to modify chemical motifs and

atisfy patentability requirements by inspecting

hemical synthesis issues. At this chemistry-first

hase, the contribution of ‘omics-based

pproaches might be limited, but producing

roper ‘omics data upon compound treatment

an facilitate evaluations of several aspects of

ads. Analytical points for omics-based lead

valuation are described below.

(i) The use of proper data: ‘omics data can be

electively produced to reflect the functionality

f target proteins. For example, RNA-seq and

hIP-seq revealed that ABBV-744 acts as a BRD4

hibitor through displacement of the protein

om androgen receptor-associated super-

nhancers in prostate cancer [58]. Likewise,

enerating data, such as RNA-seq, phospho-

roteome, and KINOMEscan data for kinase

hibitors, and RNA-seq and metabolome data

r enzymatic inhibitors, is a practical strategy;

i) mechanism of action (MoA): the MoA is

vestigated based on whether drug signatures

re enriched compared with any reference

ene-set [e.g., Molecular Signatures Database

SigDB), Gene Ontology, Kyoto Encyclopedia

f Genes and Genomes (KEGG), Reactome, and

nrichr libraries). Gene-set analyses are per-

rmed by Fisher’s exact test [Enrichr, DAVID,

genuity Pathway Analysis (IPA), GoMiner,

APPFinder, and EASE] or the Kolmogorov–

perturbagens: using genetic perturbation data

from LINCS and GEO, the efficacy of compounds

can be assessed by comparing their signatures

with those of genetic perturbation of the

common target and, thus, determining the de-

gree of similarity. Higher similarity indicates a

tendency toward more potent and selective

leads; and (iv) decision-making for develop-

ment: the transcriptome is sometimes infor-

mative for go/no-go decisions during lead

optimization. Previously, the adverse effects of

leads were determined by the downregulation

of tubulin genes in the development of PDE10A

inhibitors and the downregulation of mito-

chondrial genes in the development of EGFR

inhibitors [60].

Prediction of drug responses
During lead optimization, hundreds of com-

pounds are chemically synthesized and com-

mitted to a screening campaign by repetitive

biochemical and cellular assays. Biochemically

potent leads are selected based on IC50 and then

subjected to cell-based assays that measure the

drug sensitivity of cancer cell lines (CCLs)

according to the IC50, EC50 or area under the

curve (AUC) [61]. These repetitive tasks, al-

though mandatory for anticancer drugs, are

sometimes labor intensive because hundreds of

leads are evaluated across dozens to hundreds

of CCLs.

machine learning, and quantitative structure–

activity relationships, have been developed to

predict drug sensitivity [62]. Transcriptome-

based approaches can also be tailored to predict

drug sensitivity by assessing the connectivity of

three signatures (Fig. 1c): (i) the responder sig-

nature, where responders and nonresponders

are experimentally identified by IC50, and dif-

ferential gene expression in responders relative

to nonresponders is calculated using the CCLE;

(ii) the drug signature; and (iii) the CCL and/or

patient signature, where transcriptional signa-

tures of CCLs are generated by comparison with

average gene expression values in cell type-

matched CCLs, and patient signatures are cre-

ated by comparison with average gene ex-

pression values in normal tissues. Given that

CCLs and/or patients positively matched with

responder signatures might have responder-like

transcriptional programs, they are predicted to

be responders (Fig. 1c). CCLs and/or patients

inversely matched with drug signatures are also

predicted to be responders (Fig. 1c), whereas

CCLs and/or patients positively matched with

drug signatures are predicted to be nonre-

sponders because drugs might exaggerate

cancer transcriptional programs.

Here, we illustrate practical uses of the tran-

scriptome-based method described earlier using

two data sets, an erlotinib-induced signature

(GSE80344) and the CCLE. Connectivity between
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IGURE 3

n example of transcriptome-based drug sensitivity prediction and biomarker identification. (a) Heatmap and Gene Set Enrichment Analysis (GSEA) analyses
dicate that the predicted 52 responders (R) and 96 nonresponders (NR) exhibit preferential high-expression trends for CTRP-driven erlotinib-sensitive and
rlotinib-resistant genes, respectively. (b) Significant enrichment (P < 0.05) of EGFR and BRAF mutations in patient subgroups predicted to be responders
gainst erlotinib and vemurafenib, respectively. Heatmaps exhibit nonresponder-specific high-expression trends for CTRP-driven resistant genes against
rlotinib and vemurafenib.
mirnov statistic (Gene-Set Enrichment
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nonresponders (positive match) (Figs. 1c and

3a). This simple transcriptome-based prediction

resulted in �80% accuracy compared with

previous experimental results [63]. The result

can be also validated using independent CTRP

data [64]; CTRP-driven erlotinib-sensitive and

erlotinib-resistant genes were exclusively

expressed in subgroups predicted to be re-

sponders and nonresponders, respectively

(Fig. 3a). This example reveals that transcrip-

tome data alone can aid in selecting CCLs for

cell-based assays by predicting drug sensitivity.

Biomarker identification
Biomarkers are molecular indicators of drug

applicability in individual patients and, there-

fore, are required for successful clinical trials and

precision medicine. The recent recognition that

targets, drugs, and biomarkers constitute an

indispensable therapeutic triad emphasizes the

importance of biomarkers in drug discovery [65].

As evidenced by previous pharmacogenomics

studies [Genomics of Drug Sensitivity in Cancer

(GDSC) and CTRP] [66,67], ‘omics data provide

fundamental information for biomarker identi-

fication. A study in which 82% of cancer de-

pendencies were predicted by transcriptomes

highlights the rationale for transcriptome-based

biomarker identification (16% by mutations and

2% by copy number) [14]. The predictive power

of mutations might be underestimated because

of the low frequency of mutations. Indeed, the

administration of many approved drugs is

guided by the presence of driver mutations that

elicit oncogene addiction [68].

We introduce an ‘omics-based workflow to

predict biomarkers. For a proof of concept, two

drugs with known biomarkers, erlotinib

(GSE51212) and vemurafenib (GSE99898), were

selected. First, sensitivity to these drugs was

predicted by estimating the connectivity be-

tween drug signatures and disease signatures

from the TCGA (Fig. 1c). Then, comparative

multiomics analyses of the predicted responders

and nonresponders (Fig. 1d) revealed that EGFR

and BRAF mutations, which are known bio-

markers for erlotinib and vemurafenib, respec-

tively, were significantly enriched in responders

(Fig. 3b). This example shows that a drug sig-

nature alone can facilitate the identification of

responder-associated biomarkers. However,

when transcriptome data are derived from tu-

mor tissues, cancer cell-specific signatures can

be confounded by intratumoral heterogeneity

in cell type (e.g., immune cells, fibroblasts, and

vascular cells) [69]. This issue can be addressed

type proportions using cell type-specific tran-

scriptome data [70].

Concluding remarks
Here, we have outlined the bioinformatics

contributions during early drug discovery by

highlighting the practical applications of ‘omics

data. Despite the advantages of ‘omics-based

approaches, their ability is sometimes limited.

For example, drug signatures at given time

points and/or concentrations might not faith-

fully represent drug activities. This problem

could be complemented by integration with

cheminformatics and/or artificial intelligence-

based modeling considering the structure and/

or pharmacophore properties of targets and

compounds [42]. Another limitation is that in

vitro ‘omics-based activity cannot be extrapo-

lated to in vivo activity, and even in vivo pre-

clinical activity does not guarantee clinical

efficacy [48]. Given that an understanding of

pharmacokinetics, drug metabolism, and toxic-

ity could be the missing link for this discrepancy

[46], the establishment of well-curated data for

these in vivo drug properties is mandatory.

This review described the importance of

bioinformatics-guided development for both

bioinformaticians and other investigators.

Investigators accustomed to traditional drug

development might remain skeptical

regarding bioinformatics-guided development.

Nonetheless, with the advent of precision

medicine, reorientation toward novel colla-

borations among multidisciplinary experts for

efficient, well-organized drug development is

warranted.
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