Lecture 4 :

The electromagnetic waves in conducting medium: In conductors one has a free curent
density Jf =c E , where o stands for the conductivity. Consequently Ampere’s law of
Maxwell’s equations is modified with the presence of this term. We write them for a linear
medium as :
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Using the continuity equation and Gauss’ law we can proove that the free charge density py
decays very rapidly. So one can take it to be zero, pr = 0, for good conductors, because we
ara not interested in the transient behaviour . Therefore Maxwell equations reduce to the form

below :
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Following the same mathematical step as before one can obtain the wave equations for the
fields :
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These wave equations still admit plane wave solutions but now we have a big difference : the

wave number k is complex !
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The real part k determines wavelength, speed of propagation and index of refraction as usual.
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Imaginary part k¥ defiens the skin depth d= 1/«

Also the reflection and transmission coefficients can be obtained using the boundary
conditions at a conducting surface.



The phase and group velocities of the eelctromagnetica waves are defined as
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The frequency dependence of the dielectric constant € in non-conducting medium can be
derived by using a simplified model (although classical) of the electrons in dielectrics. The
detailed analysis permits us to express the complex permittivity £=¢,(1+ 7,)= &, &,
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On the other hand the complex wave number can be written as :

k=+léu, o=k+ix

Evidently the wave attenuates and the quantity =2« 1is called the absorption coefficient.

We arrive at the following results.
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Discussion of the anomalous dispersion and Figure 9.22 of the D.Griffiths’s textbook is to be
done in the class.



