2.8. Ortogonal Polinomlar Cinsinden Seriye Açılımlar

\[[a, b] \text{ aralığından parçalı süreklî herhangi bir } f(x) \text{ fonksiyonu } \phi_n(x) \text{ ortogonal polinomları cinsinden}
\]

\[f(x) = \sum_{n=0}^{\infty} c_n \phi_n(x) \]

formunda düzgün yakınsak bir seriye açabilir. Burada \(c_n \) katsayıları

\[c_n = \frac{\int_a^b f(x) w(x) \phi_n(x) \, dx}{\int_a^b w(x) \phi_n^2(x) \, dx} ; \quad n = 0, 1, \ldots \]

ile verilmektedir.

Şimdi de örnek olarak Legendre polinomlarına açılımları inceleyelim.

\([-1, 1]\) aralığından parçalı süreklî bir \(f(x) \) fonksiyonu \(P_n(x) \) Legendre polinomları cinsinden

\[f(x) = \sum_{n=0}^{\infty} c_n P_n(x) ; \quad -1 \leq x \leq 1 \]

formunda bir seriye açabilir. Bu ifadenin her iki yanı \(P_m(x) \) ile çarpıp \([-1, 1]\) aralığından integral alınırsa ve Legendre polinomlarının ortogonallık özelliği kullanılarak, \(c_n \) katsayıları

\[c_n = \frac{2n + 1}{2} \int_{-1}^{1} f(x) P_n(x) \, dx \]

formunda bulunur.

Örnek 1. \(f(x) = x^2 + x - 1 \) polinomunu Legendre polinomları cinsinden ifade ediniz.

Çözüm: \(-1 \leq x \leq 1\) aralığında \(f(x) = x^2 + x - 1 \) fonksiyonu

\[f(x) = x^2 + x - 1 = \sum_{n=0}^{\infty} c_n P_n(x) \]

şeklinde bir seri açılıma sahiptir. \(f(x) = x^2 + x - 1 \) ikinci dereceden bir polinom olduğundan \(n \geq 3 \) için \(c_n = 0 \) dir. \(P_0(x) = 1 \), \(P_1(x) = x \) ve \(P_2(x) = \frac{3x^2 - 1}{2} \) olduğu dikkate alarak
c₀, c₁, c₂ katsayları

\[c₀ = \frac{1}{2} \int_{-1}^{1} (x^2 + x - 1) \, dx = -\frac{2}{3} \]

\[c₁ = \frac{3}{2} \int_{-1}^{1} (x^2 + x - 1)x \, dx = 1 \]

\[c₂ = \frac{5}{4} \int_{-1}^{1} (x^2 + x - 1)(3x^2 - 1) \, dx = \frac{2}{3} \]

olarak bulunur. Böylece \(f(x) = x^2 + x - 1 = -\frac{2}{3} P₀(x) + P₁(x) + \frac{2}{3} P₂(x) \) olarak elde edilir.

Örnek 2.

\[
f(x) = \begin{cases}
1 & -1 \leq x \leq 0 \\
 x^2 & 0 \leq x \leq 1
\end{cases}
\]

fonksiyonunun ilk üç terimli Legendre serisini elde ediniz.

Çözüm: \(f(x) \) fonksiyonunun

\[
f(x) = \sum_{n=0}^{\infty} cₙ Pₙ(x) = c₀ P₀(x) + c₁ P₁(x) + c₂ P₂(x) + ...
\]

Legendre serisi açılımda \(c₀, c₁, c₂ \) katsaylarını elde edelim.

\[
cₙ = \frac{2n + 1}{2} \int_{-1}^{1} f(x) Pₙ(x) \, dx = \frac{2n + 1}{2} \int_{-1}^{0} Pₙ(x) \, dx + \frac{2n + 1}{2} \int_{0}^{1} x^2 Pₙ(x) \, dx \quad ; \quad n \geq 0
\]

formülünde \(n = 0, 1, 2 \) için \(P₀(x) = 1 \), \(P₁(x) = x \), \(P₂(x) = \frac{1}{2}(3x^2 - 1) \) polinomları yerine
konulursa

\[c_0 = \frac{1}{2} \int_{-1}^{0} dx + \frac{1}{2} \int_{0}^{1} x^2 dx = \frac{1}{2} + \frac{1}{6} = \frac{2}{3} \]

\[c_1 = \frac{3}{2} \int_{-1}^{0} x dx + \frac{3}{2} \int_{0}^{1} x^3 dx = -\frac{3}{4} + \frac{3}{8} = -\frac{3}{8} \]

\[c_2 = \frac{5}{4} \int_{-1}^{0} (3x^2 - 1) dx + \frac{5}{4} \int_{0}^{1} x^2 (3x^2 - 1) dx = \frac{1}{3} \]

bulunur. O halde istenilen ilk üç terimli Legendre serisi

\[f(x) = \frac{2}{3} P_0(x) - \frac{3}{8} P_1(x) + \frac{1}{3} P_2(x) + ... \]

olarak elde edilir.