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Yatiskin —Hal Model Esitliklerinin Coziimu

Bu denklemin ¢ozimuindeki kokler degiskenlerin yatiskin hal degerleridir.

N degisken iceren bir sistem icin n tane esitlik g6z 6ntinde bulundurulursa,

fj_{.ﬁfl_.:f:_. "'I:"!:} =0
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f:{_.:fl_.xz_. "'I:"!:} =0

fu(xy,%0,0.2,) =0

flx) =0

Seklinde cebirsel denklemler elde edilebilir.
Be denklem setini matris formunda yazmak istersek;



N degiskenli ve n tane dogrusal model esitliklerinin

genel formunu gostermek 1stersek;
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Bunun matris formu ise ;

AX=Db
(3)



Bilinmeyen x 1 ¢ozmek 1¢in diizenleme yapilirsa,
f(x)=Ax-b=0

Diizenlenirse;

x= Alb

Buradan bilinmeyen x vektorii bulunabilir.

Matlab ortaminda ¢6ziim i¢in;

>> X = InV(A)*b



EXAMPLE 3.1 Linear Absorption Model, Solved Using MATLARB

Consider a 5-stage absorption cotumn (presented in Module 6 in Section V) that has a model of
the following form (x is a vector of stage liquid-phase compositions and u is a vector of column

feed compositions):

O0=Ax+Bu
or
Ax=-Bu
the solution for xisx = ~A~'Bu
The values of A, B, and u are:
a =
~-0.3250 0.1250 0
¢.2000 -C.325C 0.1250
0 0.2000 -0.3250
0 8] 0.2000
0 0 0
b =
0.2000 0
0 C
0 o]
0 G
0 0.2500
il =
0

0

0
0.1250
-0.3250
0.2000

0.1250
-0.3250




The following MATLAB command can be used to solve for X
» K = -invia)*bru

o=

L0076
.0198
.039%2
.0704
L1202

oo o o o

Use of the MATLAB left-division operator (V) yields the same result more efficiently
(faster computation time), using the LU decomposition technique:

» x = —a\ (b*u)




EXAMPLE 3.2 A Reactor with Second-Order Kinetics

The dynamic model for an isothermal, constant volume, chemical reactor with a single second-
order reaction 1s:

dc, F F

a v oAy

C, - kC?

Find the steady-state concentration for the following inputs and parameters:
FIV = | min~!, Cap= 1 gmol/titer, k=1 liter/(gmol min)
At steady-state, 4C,/dt = 0, and substituting the parameter and input values, we find

- CAS - Cf%.‘:: 0
where the subscript s is used to denote the steady-state solution. For notational convenience, fet

x=C,,, and write the algebraic equation as
3
A)y=—-x*—x+1=0

We can directly solve this equation using the quadratic formula to find x = —-1.618 and 0.613 to
be the solutions. Obviously a concentration cannot be negative, s0 the only physically meaning-
ful solution is x = 0.618. Although we know the answer using the quadratic formula, dur objec-
tive is to illustrate the behavior of the direct substitution method.

To use the direct substitution method, we can rewrite the function in two different ways:
(i) x2=—x + 1 and (ii) x = =x? + 1. We will analyze (1} and leave (ii) as an exercise for the reader
(see student exercise 4).

(i} Here we rewrite f{x) to tind the following direct substitution arrangement




MATLAB ROUTINES FOR SOLVING FUNCTIONS
OF A SINGLE VARIABLE

MATLAR has two routines that can solve for the zeros of a function of a single variable.
FZERO is used for a general nonlinear equation, while ROOTS can be used it the nonlin-
ear equation is a polynomial.

3.41 FZERO

The first routine that we use for illustration purposes is fzero. £zero uses a combina-
tion of interval halving and false position.

In order to use £zero, you must first write a MATLAB m-file to generate the func-
tion that is being evaluated. Consider the function fx) =x* —2x -3 =0.

The following MATLAB m-file evaluates this function (the m-file is named
fenl.m): '

function y = fcnl (x)
y = X2 - 2*x - 3;

After generating the m-file £cnl.m, the user must provide a guess for the solution
to the £zero routine. The following command gives an initial guess of x = 0.

v = fzero('fcnl', 0}



MATLAB returns the answer:

For an initial guess of x = 2, the user enters
7z = fzero('fcnl®, 2)
and MATLAB returns the answer
z = 3

These results are consistent with those of Example 3.2, where we found that there were
two solutions to a similar problem (we could use the quadratic formula to find them).
Again, the solution obtained depends on the initial guess.

A third argument allows the user to selecta relative tolerance (the default is the ma-
chine precision, eps). A fourth argument triggers a printing of the iterations.

3.4.2 ROOTS

Since the equation that we were solving was a polynomial equation, we could also use the
MATLAB routine roots to find the zeros of the polynomial. Consider the polynomial
function:

x2 = 2x — 3 =0
The user must create a vector of the coefficients of the polynomial. in descending order.
c=[1 -2 -31"'

Then the user can type the following command

roots(c)
and MATLAB returns
ans =
3
-1

Apain. these are the two solutions that we expect.



MULTIVARIABLE SYSTEMS

In the previous sections we discussed the solution of a sir.lgle .algebraic'equgtion with a
single unknown variable. We covered direct substitution, bisection, ‘reggh falsi, and New-
ton’s method. In this section, we will discuss the reduction of a multivariable problem to a
single-variable problem, as well as the multivariable Newton’s method.

Consider a system of n nonlinear equations in # unknowns

fix)=0

Sec. 3.5 Multivariable Systems 65

There are some special cases where i — | variables can be solved in terms of one vari-
able—then a single variable solution technique can be used. This approach is shown in
the following example.

XAMPLE 3.3 Reducing a two-variable problem to a single-variable problem

Solve the following system of nonlinear equations.

flxpx)= x—4xi- xx;=0 (3.15)

fz[xl,x:{) = 2 X'_s - x% + 3 xi.rz = O (3 16)

From (3.15) we can solve for x, 1n terms of x; to find:

ne=l-dx (3.17)



EXAMPLE 3.3 Reconsidered. Using MATLAB

The m-file used to implement Example 3.3 using £solve 18

function £ = nle(x)
F(l)= x(l)—é*x(l)*x(l)—x(l)*X{Z);
£(2)= 2*x(2)~x(2)*x(2)+3*x(1)*x(2);

which is placed in an m-file called nle.m
The initial guess is entered

x0 = {1 11';



and we obtain the solution by entering
x = fsolve{ ' nle',x0)
which gives us the expected results
x = [0.2500 0.00001}"

Computationally faster results will be obtained if the analytical Jacobian is used,

3 x, 2-2x, +3x

The following function file generates the analytical Jacobian for this problem.

function gf = gradnle(x)
gf(1,1)=1-8*x(1)-x(2};
(1,2)=-x(1);
£(2,1)=3*x(2);
(2,2)=2-2*x(2)y+3*x(1);
which we place in an m-file called gradnle .m. We can then solve this problem by entering

x0 = [1 11°';
options (5)=0;
x = fsolve{'nle',x0,options, 'gradnle’)

The options vector can be used 1o select the Levenberg-Marquardt method by setting

options(5)=1;




Sistemde Yatiskin-hal Enerji denkligi yazilirsa:

Birim zamanda sisteme Birim zamanda sistemden -0
giren enerji miktari Cikan enerji miktari

0 0
mc, T, +Q—mc, T, =0 (2)

Burada, M :Akiskanin birim zamandaki kiitlesini

C 0 :Akiskanin 1s1 kapasitesini,

TOO :Akiskanin tanka giris sicakligin,

Q : Tanka birim zamanda disaridan verilen 1s1 miktarini,

-I-10 :Akiskanin tankdan ¢ikis sicakligini gostermektedir.



Ornek: Siirekli Tam Karistirmah bir reaktér modeli

Asagidaki bir CSTR’de birinci mertebeden bir tersinmez reaksiyon olusmaktadir.

AK—B: r=-kc,
Fo,To . |
C >
Ao V »l‘ CA

Sekil 3: Karistirmali bir reaktor



Sistemde Yatiskin-hal toplam kiitle denkligi:

giren madde miktar1 - | Cikan madde miktari
Fopo —Fp =0 (3)

Sistemde Yatiskin-hal A bileseni kiitle denkligi:
Birim zamanda sisteme Birim zamanda sistemden _ Birim zamanda sistemden | _ 0
giren A miktari - | Cikan madde miktar kaybolan A miktari B

FC,, —FC_, —kC)V =0 (4)

Sistemde hacim sabit oldugundan F hacimsel akis hizlar1 esit
alinmastir



Kimyasal proseslerin yatiskin olmayan hal modelleri
|. Mertebeden Dif.Denklemlerle ifade edilen sistemler

-S1v1 Seviye Sistemi

Fy

Sekil 4: Sivi seviye tanki



Sistemde Yatiskin Olmaya kiitle denkligi yazilirsa;

Birim zamanda sisteme Birim zamanda sistemden| | Birim zamanda
giren madde miktari - | Cikan madde miktari — | sistemde biriken

madde miktari

dhy
Fopo —For = Ap dt (%)
F = El (5) denkleminde yerine konup diizenlenirse,
dhq
HRE-F hi = RF, (6)
M | b, =RF (7)
T qt 1= flyg

T Zaman sabitidir



