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Figure 1 shows a finite automaton (FA) (automaton is singular and automata is plural) that we
will call M1. Such a drawing is called the state diagram of M1. It has three states: q1, q2, and
q3. The start state, q1, is indicated by the arrow pointing at it from nowhere. The accepting (final)
state, q2, is drawn with double circles. A FA always has only one starting state but it can have
multiple accepting states. Arrows going from one state to another show the transitions.

When this automaton receives an input string such as 1101, it processes the string symbol by
symbol and produces only one output: accept/reject. This output depends on which state the
machine is at the end of the input string.

q1
1−→ q2

1−→ q2
0−→ q3

1−→ q2.accept.

M1 accepts strings such as 1, 01, 11, 01010101, . . . (any string that ends with a 1) and 100, 0100,
110000, 01010000, . . . (strings ending with even number of 0s after the last 1). It rejects other strings
(such as 0, 10, 101000, . . . ).

Formal Definition of FA

Formally, a FA is a 5-tuple (Q,Σ, δ, q0, F ), where

1. Q is a finite set of states,

2. Σ is the input alphabet,

3. δ : Q× Σ→ Q is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accepting (final) states.

∗Based on the book “Introduction to the Theory of Computation” by Michael Sipser.

Figure 1: The first FA example.
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Figure 2: The state diagram of M2.

Figure 3: The state diagram of M4.

For example, for the first example M1, we can write

M1 = ({q1, q2, q3}, {0, 1}, δ, q1, {q2})

where δ is given with the following table.

0 1
q1 q1 q2
q2 q3 q2
q3 q2 q2

If A is the set of all strings that a FA, M , accepts, we say that A is the language of machine M
(or that “M recognizes A”) and we write L(M) = A.

Example: M2 = ({q1, q2}, {0, 1}, δ, q1, {q2}) where δ is

0 1
q1 q1 q2
q2 q1 q2

The state diagram of M2 is given in Figure 2. Note that the formal definition and state diagram
contain the same information and that one can be obtained from the other.

Exercises: Work on your own and think about how M2 processes an input string like 1101. Can
you find out the language recognized by M2? In other words, what is the set A2 = L(M2)? What
changes if we create a new machine M3 from M2 by making q1 a final state and q2 a non-final state?

Note: If the starting state is also an accepting state, then the FA accepts the empty string (ε).
Example: The state diagram for the FA M4 is given in Figure 3. This automaton is the first

example where we see more than one accepting state. Also, you should note that the input alphabet
is different. The strings for this machine consists of a’s and b’s. Additionally, the start state of M4

is only used at the beginning. After processing the first symbol of the input string, the automaton
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never goes back to state s. Because of this and the fact that there is no passage from q states to r
states or in the opposite direction, it can be considered like two automata combined together.

If the input string starts with an a, we go left to q states, which makes sure that the string ends
with an a. Otherwise (i.e., if the first symbol is a b), we go right to r states, which makes sure that
the string ends with a b. Combined together, they all work to make sure that the input string begins
and ends with the same symbol.

Formal Definition of Computation

Let M = (Q,Σ, δ, q0, F ) be a FA and let w = w1w2 . . . wn be a string where each wi ∈ Σ. M accepts
w if a sequence of states r0, r1, . . . , rn in Q exists with three conditions:

1. r0 = q0,

2. δ(ri, wi+1) = ri+1, for i = 0, 1, . . . , n− 1, and

3. rn ∈ F .

M recognizes language A if A = {w |M accepts w}.
Definition: A language is called a “regular language” if some FA recognizes it.

Designing a FA for a language/problem

Like proving a theorem, this process involves creativity. So, there is no algorithm (a recipe/formula)
for designing a FA when given a language. But, there are useful techniques. For example:

• Put yourself in place of the automaton;

• Work on some example strings;

• Think about what you/the automaton need(s) to remember when looking at the next symbol
at any point (Question: Why not remember all?)

Note: Keep in mind that you/the automaton sees the string symbol by symbol. After each symbol,
the decision for the string up to that point must be correct because when the end of the string comes
is unknown.

Example: Design a FA that recognizes the language

A = {x01y | x and y are any strings of 0s and 1s}

.
Some example strings in A are 01, 11010, and 100011. Some example strings not in A are ε,

0, 11000. For the formal definition, what do we already know about this machine? We know that
input alphabet is binary, Σ = {0, 1}. (Actually, this is the smallest set. Any set including 0 and 1
will work.) It will have states (Q), one of which, q0, will be the start state. What does it have to
remember at any point when processing a string? Have we seen a 01?

• If so, the string will be accepted.

• If not,

– and if the last symbol was a 1 or if we are looking at the first symbol, we have not seen
anything towards a 01.

– and if the last symbol was a 0, the next symbol is perhaps a 1 which should cause the
string to be accepted. So, this should be a separate situation that we should remember.

The FA for this language is drawn in Figure 4. The formal definition can be completed from this
diagram. Think about how each state corresponds to the different situations described in the items
above.

Exercise: Σ = {0, 1}, design a FA that recognizes the language that contains all strings with
odd number of 1s.
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Figure 4: The FA for the first design example.

Properties of FA and Regular Languages

Important operations on regular languages are set operations (union, intersection, complement,
difference), concatenation, and star. A language is also a set, so the classical set operations such as
union and intersection can be applied to them. The result of applying these operations to languages
can again be considered as a language. We won’t redefine these operations here. The other two
operations are defined as below.

• Concatenation of languages A and B is AB = {xy | x ∈ A and y ∈ B}.

• Star is a unary operation and defined as A∗ = {x1x2 . . . xk | k ≥ 0 and each xi ∈ A}.

Note: For any A, always ε ∈ A.
Example: Let Σ = {a, b, c, . . . , z}. If A = {good,bad} and B = {boy, girl}, then

A ∪B = {good,bad,boy, girl}
AB = {goodboy, goodgirl,badboy,badgirl}
A∗ = {ε, good,bad, goodgood, goodbad,badgood,badbad,

goodgoodgood, . . . ,badbadbad, . . . }

Closure Properties

In general, a collection of objects is closed under some operation if applying that operation to
members of the collection returns an object also in the collection. For example, N is closed under
multiplication but it is not closed under division.

The regular languages are closed under set operations, concatenation, and star operation. Be-
cause of this, they are sometimes called regular operations.

Theorem: The set of regular languages is closed under the union operation. In other words, if
A and B are regular languages, then so is A ∪B.

Proof Idea: Because A and B are regular, (according to the definition of regular languages)
there has to be machines that recognize them. Let us call them MA and MB respectively. We can
use proof by construction and show that a machine M can be constructed from MA and MB and
that M recognizes A ∪B.

M must accept a string exactly when MA or MB would accept it. So, in a way, M needs to
simulate both MA and MB . How can this be done? If we try to run one of the machines and then
the other one, we need to rewind (go back to the beginning of) the input string in between. This is
not possible. So, both MA and MB should be simulated simultaneously.

To do this, M needs to remember, at any time, both the states that MA and MB are in. If MA

has kA states and MB has kB states, there are kA × kB possible pairs to remember and these are
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Figure 5: (a) The FA that recognizes A. (b) The FA that recognizes B. (c) The FA constructed
from MA and MB that recognizes A ∪B.

our states for M . The start state of M will be the pair consisting of the start states of MA and MB .
Transitions for M can be found out from the transitions of MA and MB . And, because we want to
create a machine for the union, we want to accept an input string when one of MA or MB accepts
it. Therefore, the final states of M will be those that include a final state of MA or MB .

Proof: Let MA = (QA,Σ, δA, qA, FA) be the automaton that recognizes A and MB = (QB ,Σ,
δB , qB , FB) be the automaton that recognizes B. (Note: We take the alphabets to be the same (Σ)
to make the proof simpler. It is also possible to prove when alphabets are different.)

We can construct an automaton M = (Q,Σ, δ, q0, F ) that will recognize A ∪B as follows.

1. Q = {(rA, rB) | rA ∈ QA and rB ∈ QB}. So, Q = QA ×QB .

2. q0 = (qA, qB). The start state is the pair formed with both start states.

3. F = {(rA, rB) | rA ∈ FA or rB ∈ FB}. (One of the pair is an accepting state.)

4. δ can be defined as follows. For each (rA, rB) ∈ Q and each x ∈ Σ, δ ((rA, rB), x) =
(δA(rA, x), δB(rB , x)).

This concludes the construction. It is a simple construction and with a little effort, the reader
can be convinced that M recognizes A∪B. If not, or for more complex constructions in other proofs,
it will be necessary to prove also that the constructed M accepts only strings in A ∪ B. (For the
current construction, induction can be used.)

Example: A = {x | x has odd 0s}, B = {x | x has 01 in it}. The automata MA and MB that
recognize languages A and B and the automaton M constructed from MA and MB to recognize
A ∪B as described above are all shown in Figure 5. The reason for showing one of the states of M
and its transitions dashed is that there is no way to reach that state from the start state. So, the
dashed parts can actually be omitted without changing the machine.

Question: How can the proof for union operation be adapted to prove that the set of regular
languages is closed under intersection operation?
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Theorem: The set of regular languages is closed under the concatenation operation. In other
words, if A and B are regular languages, then so is AB.

Note: For an easy proof of this theorem, we need to define a new idea called nondeterminism
(see next lecture notes).

6


