EEE 321 Signals and Systems

Ankara University

Faculty of Engineering

Electrical and Electronics Engineering Department

Power and Energy Signals

EEE321 Signals and Systems

Lecture 4

Agenda

- Power
- Energy
- Harmonically related complex exponentials

Power and Energy of Periodic Signals

- Periodic signals are examples of signals with infinite total energy, but finite average power.
- Consider periodic complex exponential signal $e^{j\omega_0 t}$.

Total energy and average power of the signal over one period are

$$E_{T_o} = \int_{T_o}^{T_o} |e^{j\omega_o t}|^2 dt$$
$$= \int_{0}^{T_o} 1 dt = T_o$$

$$P_{T_o} = \frac{1}{T_o} E_{T_o} = 1$$

It is also clear that $E_{\infty}=\infty$ and

$$P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |e^{j\omega_{o}t}|^{2} dt = 1$$

Relationship between the fundamental frequency and period for continuous-time signals

$$\omega_1 > \omega_2 > \omega_3 \iff T_1 < T_2 < T_3$$

Sets of harmonically related complex exponentials

$$\phi_k(t) = e^{jk\omega_0 t}, k = 0, \pm 1, \pm 2, ...$$

Since
$$e^{j\omega T_o}=1$$
 implies that $\omega T_o=2\pi k, k=0,\pm 1,\pm 2,...$ (ωT_o is multiple of πk)
$$\omega_o=\frac{2\pi}{T_o}$$

For k=0, $\phi_k(t)$ is a constant, while for other values of k, $\phi_k(t)$ is periodic with fundamental frequency $|k|\omega_0$ and fundamental period

$$\frac{2\pi}{|k|\omega_o} = \frac{T_o}{|k|}$$

The k^{th} harmonic $\phi_k(t)$ is still periodic with period T_o as well, as it goes through exactly |k| of its fundamental periods during any time interval of length T_o .

Example *

Plotting the magnitude of the signal

$$x(t) = e^{j2t} + e^{j3t}$$

It can be rewritten as

$$x(t) = e^{j2.5t} (e^{-j0.5t} + e^{j0.5t})$$

Using Euler's relation

$$x(t) = 2e^{j2.5t}\cos(0.5t)$$

Therefore

$$|x(t)| = 2|\cos(0.5t)|$$

Note that $|e^{j2.5t}| = 1$.

Example (cont.)*

* Example 1.5. Signals and Systems, A.V. Oppenheim, A. S. Willsky with S. H. Nawab

General Complex Exponential Signals

$$x(t) = Ce^{at}$$

If C and a are expressed in polar and rectengular form, respectively

$$C = |C|e^{j\theta}$$
$$a = r + j\omega_o$$

Then $Ce^{at} = |C|e^{j\theta}e^{(r+j\omega_0)t} = |C|e^{rt}e^{j(\omega_0t+\theta)}$

By using Euler's equation, $Ce^{at} = |C|e^{rt}\cos(\omega_o t + \theta) + j|C|e^{rt}\sin(\omega_o t + \theta)$

Therefore, for r=0, the real and imaginary parts of a complex exponential are sinusoidal. For r>0, the signal is sinusoidal multiplied by growing exponential. If r<0, the signal is sinusoidal multiplied by decaying exponential.

Discrete-Time Complex Exponential and Sinusoidal Signals

Discrete-Time Complex Exponential Signals

$$x[n] = C\alpha^n$$

where C and α are complex numbers in general.

If
$$\alpha = e^{\beta}$$
 , then $x[n] = Ce^{\beta n}$

Real-exponential signals: If C and α are real x[n] is called real exponential signal.

* If α is 1, then x[n] is constant, if α is than x[n] alternates between -C and +C.

Electrical and Electronics Engineering Department, EEE321
Signals and Systems

• Discrete-Time Sinusoidal Signals:

If β is purely imaginary than $|\alpha|$ =1. Specifically, consider $x[n]=e^{j\omega_0n}$

which has infitine total energy, but finite average power.

As in continuous-time case this is related to

$$x[n] = A\cos(\omega_o n + \varphi)$$

which also has infinite total energy, but finite average power.

Since n is dimensionless, both ω_o and φ will have units of radians.

Also Euler's equation is $e^{j\omega_o n} = \cos(\omega_o n) + j\sin(\omega_o n)$

and therefore

$$A\cos(\omega_o n + \varphi) = \frac{A}{2}e^{j\varphi}e^{j\omega_o n} + \frac{A}{2}e^{-j\varphi}e^{-j\omega_o n}$$

References

• Signals and Systems, 2nd Edition, Oppenheim, Willsky, Nawab